Climate Statement 2024

Advania Group March 2025

Table of Contents

1.	Introduction3
2.	Methodology4
	The Greenhouse Gas Protocol4
	Control Approach5
	Method for Scope 25
	System Boundaries5
	Common Methodology7
	Methodological Changes and Updates10
3.	Results for Advania Group12
	Total Emissions per Category and Scope12
4.	Detailed Results and Methodology per Country17
	Advania Sweden17
	Advania Denmark
	Advania Finland35
	Advania Norway41
	Advania Iceland47
	Advania UK
	Advania Serbia58
	Advania Sri Lanka62
5.	Energy Mapping
	Methodology
	Results for Energy Mapping66

1. Introduction

Advania Group is an international corporation with its headquarters in Stockholm, Sweden. They provide Managed services, Hardware and Software, and Professional Services to clients in both private and public sectors.

Advania Group spans over eight countries, all of which are separate companies. All Advania Group's companies are included in this report, namely:

- Advania Sweden
- Advania Norway
- Advania Finland
- Advania Denmark
- Advania Iceland
- Advania UK (including South Africa and USA)
- Advania Serbia
- Advania Sri Lanka

As separate entities, the companies have progressed differently in their sustainability efforts and the extent to which they monitor their emission sources. Both Advania Sweden and Advania Iceland have established Science Based Targets, a process that involved conducting a complete Scope 3 screening. Although the companies differ slightly, the same sources of emissions are the most important for all companies. As technology companies, a significant portion of emissions originates from the procurement of hardware that they subsequently sell. Additionally, providing data center services consumes substantial amounts of electricity, resulting in emissions. Finally, emissions from business travel, vehicles, and energy consumption in facilities are among the sources monitored in this climate statement.

What does this climate statement entail?

A climate statement, like a financial statement, is a summary of a company's climate impact during a financial year. A climate statement summarises emissions in carbon dioxide equivalents in a standardised way. The purpose of a climate statement is to identify a company's greenhouse gas emissions for all material (i.e. significant) parts of its operations.

What can this climate statement be used for?

A climate statement is often the foundation of a company's climate work, as it can be used as a basis for decision-making in strategy development, investment decisions and target setting, as well as for reporting to voluntary initiatives and legal requirements. Once goals and strategies are defined, the climate statement is an important tool for monitoring the climate work. The information in a climate statement can be used as a basis for:

- Setting and monitoring climate targets for the organisation.
- Reporting according to parts of the European Sustainability Reporting Standard (ESRS) E1 Climate change, which is part of the Corporate Sustainability Reporting Directive (CSRD).
- Reporting according to parts of the CDP.
- Demonstrating the company's commitment and concrete actions towards key stakeholders.

2.Methodology

In this chapter, the overarching methodology used for all Advania Group's companies is presented. Detailed methodology and assumptions for each company are presented in chapter 4.

The Greenhouse Gas Protocol

To calculate Advania Group's climate impact the <u>Greenhouse Gas Protocol (GHG Protocol)</u> has been used, which is the most recognised global standard for calculating greenhouse gas emissions from a company's operations. The calculations have been carried out according to the three¹ associated standards: <u>The Corporate Standard</u>, <u>The Corporate Value Chain (Scope 3) Standard</u> and <u>Technical Guidance for Calculating Scope 3 Emissions</u>.

According to the GHG Protocol, an activity's emissions must be reported in three Scopes (see Figure 1 below), where:

- Scope 1 represents direct emissions from the own operations.
- Scope 2 includes indirect emissions generated during the production of purchased electricity, district heating, cooling, and process steam.
- Scope 3 comprises other indirect emissions, both upstream and downstream in the value chain, arising from activities such as purchased travel, transportation, production of purchased goods and services, and commuting trips of employees.

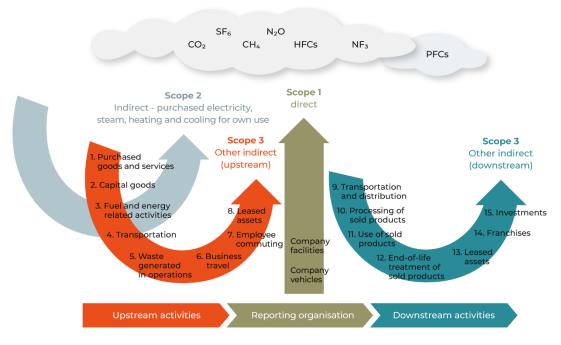


Figure 1. Schematic figure of emissions related to an activity and its value chain, according to the GHG Protocol.

¹ Starting from the fiscal year 2024 (preliminary), the GHG Protocol's standard Land Sector and Removals Guidance can also be utilised, for which there is currently a draft <u>https://ghgprotocol.org/land-sector-and-removals-guidance</u>.

An in-depth description of the calculation methods for all Scopes and categories, including details on data sources, assumptions, default values and emission factors, is available in the Common Methodology further down in this chapter and the Specific Methodology and Assumptions under each country (chapter 4).

Control Approach

Companies have different legal and organisational structures. The GHG Protocol therefore requires a control approach to be determined, either the *operational control approach* or the *financial control approach*. The allocation of greenhouse gas emissions in Scope 3 is affected by the chosen control approach and is therefore important to report.

For Advania Group's climate statement, the operational control approach is used. This means that greenhouse gas emissions are classified as direct emissions when the activity gives rise to emissions during use, for example when leasing vehicles or operating in rented premises. An exception from this methodological approach has been adopted for the Advania Iceland division to align their calculations with their Science Based Targets Initiative (SBTi) commitments. Resultingly, emissions from rental cars are for Advania Iceland presented solely in scope 3 under the category of Business Travel, rather than in Scope 1 and Scope 3 categories of Fuel- and energy-related emissions.

Method for Scope 2

According to the GHG Protocol guidelines for Scope 2, emissions from purchased energy are calculated using either a location-based method or a market-based method. For Advania Group's climate accounts, the market-based method is used. Using the market-based method means the emission factors reflect the choices of origin Advania Group has made for its purchased energy use in Scope 2. When using the location-based method, emission factors represent the average emission intensity of the grid and thus do not take active choices of the origins of purchased energy into account. The chosen method for calculating Scope 2 emissions should be presented along with the non-chosen method. The Scope 2 emissions calculated using both the market- and location-based methods are available in chapter 3 in this report.

System Boundaries

Advania Group's climate statement does not exclude any emissions in Scope 1 and 2. Greenhouse gas emissions in Advania Group's value chain are reported in Scope 3 and are categorised according to the GHG Protocol in 15 different categories. Table 1 below shows which Scope 3 categories are included and excluded in the climate accounts. The Scope 3 boundaries for Advania Group's climate statement are based on the results from a complete Scope 3 screening made for Advania Sweden's SBTi submission process. The screening showed that the emissions in the excluded Scope 3 categories in total fell below SBTi's 2/3 inclusion criteria, which states that companies setting near-term SBTs must include at least two thirds of their Scope 3 emissions in a Scope 3 target.

Some of the countries reported data outside Advania Sweden's Scope 3 target boundary, i.e. from non-hardware purchases in category 3.1 and from category 3.7. Which countries reported data in the optional categories are detailed under Specific Methodology and Assumptions in chapter 4.

Table 1. Included and excluded Scope 3 categories. Which of the Advania companies that reported the optional categories (noted as partly in the table) is detailed in chapter 4 under Specific Methodology and Assumptions.

Scop	e 3 category	Inclusion/Exclusion from Scope	Activities included
3.1	Purchased goods and services	Included (partly)	Production and manufacturing of hardware, data center services, purchased food and IT services (optional)
3.2	Capital goods	Excluded	
3.3	Upstream fuel and energy- related activities not included in Scopes I and 2	Included	Upstream emissions from fuels and energy reported in Scope 1 and 2
3.4	Upstream transportation and distribution	Included	Transported hardware from supplier to warehouse
3.5	Waste management	Excluded	Reported by Advania Iceland, these emissions are categorised as optional emissions in this Climate statement to maintain the same methodology for all divisions.
3.6	Business travel	Included	Business air, train and taxi travel, public transport, hotel stays. Advania Iceland also include rental cars.
3.7	Employee commuting	Included (partly)	Employee commuting to and from the workplace. Optional category, see inclusion under each country in chapter 4.
3.8	Upstream leased assets	Excluded	
3.9	Downstream transportation and distribution	Included	Transported hardware from warehouse to customer, estimated for all countries except Iceland based on purchased weight.
3.10 3.11	Processing of sold goods End use of sold goods	Excluded Excluded	Reported by Advania Iceland, these emissions are categorised as voluntary emissions in this Climate statement to maintain the same methodology for all divisions.
3.12	End-of-life treatment/disposal of sold goods	Excluded	Reported by Advania Iceland, these emissions are categorised as voluntary emissions in this Climate statement to maintain the same methodology for all divisions.
3.13	Downstream leased assets	Excluded	
3.14	Operation of franchises	Excluded	
3.15	Operation of investments	Excluded	

Common Methodology

For information on country-specific methodology and assumptions, please refer to each country's section in chapter 4.

Emissions from Purchased Hardware

Emissions from purchased hardware have been calculated using average values for different product categories. The product categories are Desktop, Laptop, Monitor, Printer, Server, Smartphone, Tablet, Computer mouse, Keyboard, Computer mouse and Keyboard set, Router, Switch, Headphones, and Other hardware (e.g., cables, web cameras, and docking stations). The inclusion of Keyboard, Computer mouse and keyboard set along with Switch is new for this year. This inclusion has been made to more accurately portray Advania's product portfolio, and thereby calculate the emissions from purchased hardware more correctly.

The averages are based on the purchasing figures for Advania Sweden in 2024 and applied to all Advania Group's countries. Previously, the averages have been based on sales figures, with the assumption that the sales figures portray the purchasing activities for Advania's fiscal year. The averages are weighted, which means that they consider the purchased volumes of different products and those products' specific production emissions. The production data has been retrieved from product carbon footprints (PCFs) from suppliers and includes all steps from the raw material extraction to a finished product. Where specific PCFs were unavailable, the calculations are based on several PCFs for products similar to those reported by Advania Sweden.

The averages for 2023 have been updated resulting in the recalculation of the 2023 emissions from purchased hardware. This change occurred because one large supplier of hardware, HP, uploaded updated PCFs in early 2024. These updates were performed with an updated calculation software, enabling the supplier to make more accurate carbon footprint assessments of their products. This methodological change led to a decrease in emissions. Consequently, the product categories impacted were updated for the 2023 calculation, as well as for 2019, as the decrease in emissions could be traced entirely to the update of calculation software.

The change in average emissions for the product categories between the years is mainly due to two reasons. Firstly, manufacturers have updated their PCFs. While some of the decreases are because of their increased efforts, some can be due to methodology changes and increased details in data. This is an uncertainty in the factors and calls for greater transparency in the underlying changes in the PCFs. Secondly, the averages depend on Advania Sweden's purchasing figures. For 2024, there have been shifts in the most commonly purchased products. As PCFs differ between manufacturers, this is visible in the averages and reflects changes within different product categories. For example, HP laptops constituted 83% of the average for 2023, but has decreased to 68% for 2024 with average production emissions included in the 2024 average being 154 kg CO2e/unit. Dell laptops constituted 6% of the average for 2023, but has increased to 13% for 2024 with average production emissions included in the 2024 average being 234 kg CO2e/unit.

The aim was to cover 80% of the products purchased to obtain average values that were as representative as possible. The average value is weighted based on how many models

Advania Group has purchased. Table 2 below presents the proportion of the mean value based on PCFs.

Table 2. Average emissions per product in each product category calculated based on PCFs and a share of the products sold within the product category. For instance, 62 PCFs covered 77% of the purchased laptops, averaging 161 kg CO₂e/product (weighted average). The production emissions relate to the process from raw material to a finished product.

Category	Production emissions per product kg CO2e/unit	Share of purchased products on which the value is based	Number of PCFs on which the value is based	Comment
Laptop	161	77%	62	91% of the average consists of laptops from HP (68%), Dell (13%), and Lenovo (10%).
Monitor	266	80%	46	86% of the average consists of monitors from HP (53%) and Dell (26%) and Philips (8%)
Desktop	222	80%	24	99% of the average consists of desktops from HP (66%), Lenovo (20%) and Dell (13%).
Printer	250	7%	13	Value is based partly on specific PCFs, partly on similar calculations as for 2023, 2022 and 2021, where 17 PCFs were used.
Server	910	15%	13	HP and Dell servers.
Smartphone	40	78%	21	Apple and Samsung PCFs.
Tablet	59	81%	6	Mostly iPads within this category along with Samsung.
Computer mouse	3,5	0%*	15*	All PCFs (2023) come from Logitech. *Unchanged from 2023 due to the absence of purchasing data for 2024.
Keyboard	3,16	0%	O*	*Based on no specific model, emissions are based on difference between computer mouse and computer mouse and keyboard set due to the absence of data.
Computer mouse and keyboard set	6,64	O%*	5*	*As no purchasing data for this product category was obtained for 2024, 5 models purchased in 2023 was used for the average.
Headphones	4,3	0%	4*	2023 PCFs come from Jabra. *Unchanged from 2023 due to the absence of purchasing data for 2024.
Switch	189	0%	4*	*All PCFs from Cisco products, as no purchasing data was obtained. An average CO2e/product weight has been used together with the same weight used for last year's router category.
Router	130	0%	0	Based on one general LCA from Ecoinvent. *Unchanged from 2023. due to the absence of PCFs.
Other hardware	3,5	-	-	Assumed to be of the same magnitude as computer mice. *Unchanged from 2023.

Transportation and Distribution of Purchased Hardware

Advania Groups information regarding transportation of their purchased hardware is limited to that production is based in Asia and mostly sold in Europe. Therefore, emissions from transportation are estimated based on product weights (as provided by the hardware PCFs)

and values provided by Advania Sweden regarding distances and the shares of transportation modes. Advania Sweden has discussed the share of air and sea freight with their suppliers and made a conservative assumption on the shares of each transportation mode. Additionally, the transportation from hardware being imported by air freight has previously been calculated with a Radiative Forcing Index (RFI) of 2,7. To align with DEFRA and other common organisations recommendations regarding RFI-adjustment a decision was taken to update this to 1,9, which ultimately has led to recalculation of transportation emissions for 2023 and 2019 (which is Advania Sweden's Science Base Target base year). Table 3 below displays the methodology for the transports in greater detail.

These transportation assumptions have been applied to all countries, which is a factor of uncertainty. By improvement regarding the geography-specific assumptions uncertainty in the transport emissions can be reduced.

Category	Direction of transport	Estimated distance (km)	Estimated share of transports	Emission factor sources	Assumptions
Air freight	Inbound	7 500	60%	NTM (2022)	Estimated average distance from Asia to warehouse in Hamburg. An RFI factor 1,9 has been applied.
Sea freight	Inbound	20 000	40%	NTM (2022)	Estimated average distance from Asia to warehouse in Hamburg. Assumed DWT 6 000 and cargo load factor 60%.
Road freight	Inbound	1 600	100%	NTM (2023)	Distance from warehouse in Hamburg to Stockholm.
Road freight	Outbound	150	100%	NTM (2023). Swedish Energy Agency (2023), DEFRA (2023)	Estimated average distance from warehouse in Stockholm to customers.

Table 3. Underlying assumptions used to estimate the emissions from transportation and distribution.

Average Value for Refrigerant Leakage in Data Centers

Data on refrigerant leakages is generally hard to come by for the data centers, especially when including the share that should be allocated to Advania's operations in the data center. To cope with this, an average refrigerant leakage per consumed kWh has been calculated based on data from Advania Sweden's data centers. The same average value is applied to all data centers in Advania Group where actual data has not been obtained.

Refrigerant leakages are assumed to be the same size as the refilled amount during a year. As refills do not occur every year, the data span over the years 2019 to 2022 to cope with differences over time. The data centers have reported on their total electricity consumption in the time period, and how much refrigerant refills they have had. Two kinds of refrigerants have been in use by the data centers, R134A and R410A.

The resulting value is in emissions per electricity consumption, g CO2e/kWh, which is then be multiplied with Advania's operational electricity in the data centers to retrieve the estimated emissions.

As refrigerant leakage in general happens at discrete points in time rather than continuously, it is not uncommon that there is no leakage for one year. Therefore, applying this average to non-reporting data centers might not be representative for one specific year, but should be more accurate over time.

Table 4. Data as a basis for calculating the average value used for refrigerant leakage in data centers.

No. of data centers	Years included in data	No. of refrigerants	Sources for refrigerant EFs	Unit
7	4	2	The Swedish Environmental Protection Agency (2022)	g CO₂e/kWh

Methodological Changes and Updates

For the calculations of this year's climate accounts, more specific information has been gathered concerning facilities' energy consumption and production. Firstly, for facilities and data centers to account for consumption of renewable energy, certification such as guarantees of origin (GOO) has needed to be provided. This has subsequently resulted in that some facilities have increased emissions compared to previous years as they have not successfully been able to provide certificates. Below, additional methodological changes and updates are stated for the FY 2024 calculation:

- New additions of product categories have been included in this year's calculations. Resultingly, a more accurate categorization of purchased hardware could be done during the data collection stage. The new product categories are: "Keyboard", "Computer mouse and keyboard set" and "Switch".
- Update of RFI factor from 2,7 to 1,9. Impacts the emissions of upstream transportation- and business travel.
- Previously, for all countries except from Sweden, emissions from reported district heating consumption have been calculated with an emission factor for residual electricity while these facilities were assumed to be heated with electricity. Whilst this solely impacted a few facilities, as most facilities reporting district heating are in Sweden, the emissions are now based on an average European district heating factor. This change has been executed as a clearer description of district heating was provided during the data collection stage, reducing the room for misinterpretation.
- Electricity consumption: Each year, the emission factor for Nordic Residual mix is updated, along with additional residual mixes used in the calculations. The emission factors constitute the grid mix for the remaining electricity sources after guarantees of origins have been withdrawn. As more companies actively source renewable electricity, the share of fossil fuels in the Residual mix usually increases, resulting in higher emissions. For 2024, the emission factor has increased with 14% compared to 2023.

There have been updates to the climate calculations of 2019 and 2023 because of more accurate data and assumptions. Below, the implications are outlined:

- The 2023 updated hardware emission factors have for the 2023 & 2019 calculation reduced the total cradle-to-gate emissions of purchased hardware. The change in emissions is -12 408 tons of CO2e for FY2023 and -9 049 ton CO2e for FY2019.
- Radiative Forcing Index (RFI) change from 2,7 to 1,9 has impacted the transportation emissions & business travel emissions for FY 2023. The change in emissions are -3 930 tons of CO2e for hardware transportation, and -303 ton CO2e for business travel.

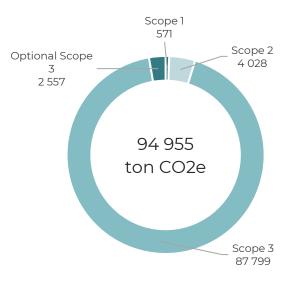
For changes in previous year's calculations for specific countries, please refer to each country in chapter 4.

3.Results for Advania Group

This chapter contains a presentation of the results from the climate calculations for the Advania Group in 2024.

Total Emissions per Category and Scope

For the year 2024, the total amount of greenhouse gas emissions for Advania Group is 94 955 tons of CO₂e, of which 571 tons (0,6%) of CO₂e are attributed to Scope 1, 4 028 tons (4,4%) to Scope 2, and 87 799 tons (95%) to Scope 3 (see Figure 2). Emissions in the optional Scope 3 categories are not included in the percentage calculation but are responsible for 2 557 tons of CO₂e. Overall, 91% of the mandatory emissions are based on actual activity data provided by Advania, whilst the remaining 9% comes from estimated activity data. More information regarding data quality is provided under each category and country. In Table 5, a categorisation of the Scope 3 emissions in accordance with the Greenhouse Gas Protocol is visualized including the optional categories.



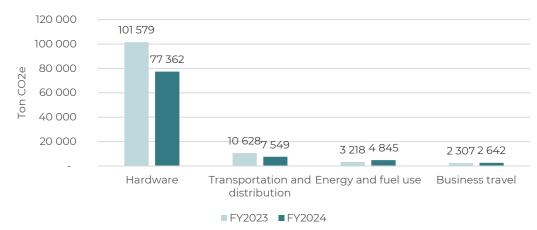


Table 5. Scope 3 emissions divided into GHG Protocol categories. Emissions marked with an asterisk (*) are not included in Advania Group's mandatory reporting for the countries. Thus, it is therefore not included in the column "Share of emissions". For more information on each country's reporting, refer to chapter 4.

CATEGORIZATION OF SCOPE 3 EMISSIONS	Total emissions 2024 [ton CO2e]	Share of total emissions 2024
Scope 3	87 799	95,0%
Scope 3 including optional reporting	90 356	N/A
3.1 Purchased goods and services	77 521	84%
3.1 Purchased goods and services – optional	462*	N/A
3.2 Capital goods	-	-
3.3 Fuel- and energy-related activities	756	0,8%
3.4 Upstream transportation and distribution	7 512	8%
3.5 Waste generated in operations	11*	N/A
3.6 Business travel	1972	2,1%
3.7 Employee commuting	1452*	N/A
3.8 Upstream leased assets	-	-
3.9 Downstream transportation and distribution	37	0,04%
3.10 Processing of sold products	-	-
3.11 Use of sold products	34*	N/A
3.12 End of life treatment of sold products	598*	N/A
3.13 Downstream leased assets	-	-
3.14 Franchises	-	-
3.15 Investments	-	-

Dividing the emissions into the four mandatory categories of Hardware, Transportation and distribution, Energy and fuel use and Business travel, it can be seen that purchases of hardware contribute to the majority of the emissions, close to 84%. This division is visualized in Figure 3 below, which also includes emissions from 2023.

Figure 3. Emissions divided into hardware, transportation and distribution, energy and fuel use and business travel.

Hardware and Transportation

Below in Table 6, a detailed description of the hardware emissions is visualized. The emissions are divided into product categories, as well as the product categories' respective emissions from transportation activities. The right most column in Table 6 highlights the percentual change from production and transportation emissions combined between 2023 and 2024.

Product category	Purchased amount 2024	Production emissions 2024, ton CO2e	Transport emissions 2024, ton CO2e	% change in emissions between FY23/FY24
Desktop	16 241	3 644	317	-34%
Laptop	235 802	38 090	2 131	-25%
Monitor	76 449	20 889	2 670	-27%
Printer	8 795	2 201	1243	-5%
Server	6 696	6 219	607	-16%
Smartphone	35 114	1 396	37	33%
Tablet	31 063	1 855	86	-25%
Computer mouse	40 683	496	36	9%
Router	2 589	338	57	-82%
Headphones	90 461	387	34	-31%
Switch	4 559	862	100	N/A
Keyboard	1 586	13	1	N/A
Computer mouse and				
keyboard set	54 912	396	209	N/A
Other purchased hardware	12 452	575	3	-62%
Total	617 402	77 362	7 549	-24%

Table 6. Hardware emissions divided into products groups and their respective emissions from transportation.

Overall, the emission from hardware is 77 362 tons of CO_2e and the emission from transportation is 7 549 tons of CO_2e . The two activities consequently contribute to 84% and 8% of Advania Group's total emissions respectively. Close to 100% of the emissions connected to production of hardware are calculated from actual activity data, whilst all emissions connected to transportation are estimated. Estimated hardware emissions are presented in the country specific result and methodology section, Chapter 4.

Energy and Fuel Use

The overall emissions from energy and fuel use increased from 3 218 tons of CO₂e in 2023 to 4 845 tons of CO₂e in 2024. Emissions from offices experienced a minor increase compared to the previous year, while emissions from data centers have increased significantly. These emissions are calculated based on the consumption of electricity, district heating, district cooling, refrigerants, as well as fuel usage from Advania Group's offices and data centers.

Table 7. Overall emissions and share of kWh actively sourced from renewable sources per facility type.

Overall emissions per facility type	Total emissions 2024, ton CO2e	Total emissions 2023, ton CO2e	Share of kWh actively sourced from renewable sources
Offices	1 993	1945	61%
Data centers	2 851	1 273	85%
Total	4 845	3 218	75%

Tables 8 and 9 show the distribution of emissions from electricity, district heating, district cooling, refrigerants, and fuel use for offices and datacenters, respectively.

Table 8. Detailed emissions and share of kWh actively sourced from renewable sources from offices.

Detailed emissions from offices	Total emissions 2024, ton CO2e	Total emissions 2023, ton CO2e	Energy 2024, kWh	% of kWh actively sourced from renewable/fossil-free sources
Electricity	1 4 4 3	1 455	5 787 902	58%
Heating	260	417	6 975 513	75%
Cooling	230	11	1 122 886	0%
Fuel use	57	59	218 697	0%
Refrigerant leakage	3	3	-	-
Total	1 993	1945	14 104 998	57 %

Table 9. Detailed emissions and share of kWh actively sourced from renewable sources from data centers.

Detailed emissions from data centers	Total emissions 2024, ton CO2e	Total emissions 2023, ton CO2e	Energy 2024, kWh	% of kWh actively sourced from renewable/fossil-free sources
Energy use	2 716	1 189	20 790 230	85%
Refrigerant leakage	135	84	-	-
Total	2 851	1 273	20 790 230	85%

Overall, 90% of the emissions from energy and fuel use are based on actual activity data, whilst the remaining 10% are based on estimated activity data. For 2023, the share of actual activity data for energy and fuel-based emissions was 80%.

Business Travel

About 3% of Advania Group's emissions come from business travel. Compared to 2023, the emissions from business travel have increased from 2 307 tons of CO_2e to 2 642 tons of CO_2e . These emissions are based on activity data related to company operated cars, rental cars, flight travel, train travel, taxi travel, hotel nights and a category called 'other', which includes emissions from bus and subway transits. The emissions distribution per category can be seen in Table 10, with business flights being the most significant source of emissions in the category. In terms of data quality, 90% of the emissions from business travel are calculated from actual activity data, while the remaining 10% are estimated.

Table 10. Emissions breakdown within the business travel category. The category called "Other" includes emissions from bus and subway transits.

Business travel	Emissions FY2024, ton CO2e	Emissions FY2023, ton CO2e	Change, %
Company operated cars and rental cars	728	649	12%
Flights	1 670	1 350	24%
Train travel	42	25	65%
Taxi travel	24	43	-43%
Hotel nights	175	233	-25%
Other	3	7	-54%
Total	2 642	2 307	15%

Emissions in Scope 2 Using an Alternative Method of Accounting

As previously mentioned, companies must report their Scope 2 impact using both the market-based and location-based method. In Table 11 below, the emissions using both methods are outlined. The emission factors for the location-based method are based on the average mix for energy production in the respective countries.

Table 11. Emissions in Scope 2 calculated using the market-based and location-based methods.

Scope 2 accounting method	Scope 2 emissions, ton CO₂e
Market-based	4 028
Location-based	2 631

CSRD (Corporate Sustainability Reporting Directive)

According to CSRD legislation, it is mandatory for relevant companies to report data points related to climate change (according to ESRS E1) in their annual reports if this issue is material. This report includes portions of the quantitative information that is mandatory to report in the annual report. Mandatory information according to CSRD is indicated in this report with a footnote. It should be noted that certain quantitative information is excluded in this report, namely: E1-7 (Greenhouse gas uptake and storage).

4. Detailed Results and Methodology per Country

This chapter includes detailed results, the methodology used, assumptions made, and emission sources accounted for, for each country in the Advania Group. Voluntary emissions are not presented in this chapter, with the exception from Advania Iceland. The reasoning being to enable annual comparisons between the years.

Advania Sweden

For Advania Sweden, the total emissions for the fiscal year 2024 are 61 706 tons of CO_2e . Compared to 2023, the total emissions for Advania Sweden have decreased by 26%. Compared to the base year 2019, emissions have decreased by 41%. 92% of the emissions are calculated from actual activity data, and the remaining 8% are based on estimated activity data.

Results and Analysis

Figure 4 below show the emissions within each Scope for Advania Sweden. As can be seen, the absolute majority of Advania Sweden's emissions occur outside of the direct operations.

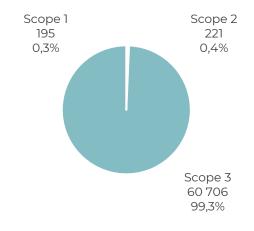
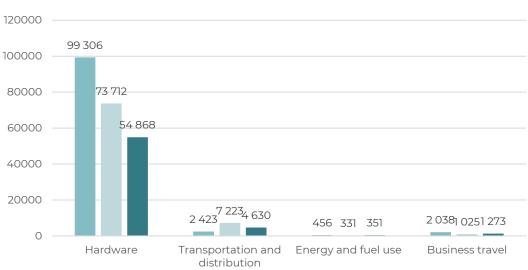



Figure 4. Greenhouse gas emissions [ton CO2e] for Advania Sweden, divided into Scopes.

Figure 5 below show the emissions split into categories over the years. Almost 90% of the emissions come from purchased hardware, and 8% from their transportation. This explains why the total Scope 3 impact is so high as both of these emission sources occur in the indirect value chain for Advania Sweden. Below, each of the four categories are presented more thoroughly.

■ FY2019 ■ FY2023 ■ FY2024

Figure 5. Emissions [ton CO_2e] for Advania Sweden divided into hardware, transportation and distribution, energy and fuel use, and business travel.

Hardware

The production of hardware accounts for the majority of Advania Sweden's emissions, consistent with the results for Advania Group. Advania Sweden is by far the largest entity in Advania emission-wise, and thus its results significantly impact the Group's overall results. In the hardware category, laptops stand for about 48% of total purchases, and 58% of emissions.

Compared to 2023, emissions from hardware have decreased by 26%, and the amount of purchased products have been reduced by 38,4%. The smaller reduction in emissions relative to purchased hardware is primarily due to a shift in the purchasing portfolio, with greater quantities of products that have greater cradle-to-gate emissions stated by the manufacturers' Product Carbon Footprint (PCF) reports. Additionally, specific hardware categories with higher emissions per piece, such as servers, has been purchased in greater quantities compared to previous year. The three product categories responsible for the absolute majority of hardware emissions are laptops, monitors along with servers. The total production emissions of laptops have compared to 2023 decreased with about 28%, whilst the quantity of purchased laptops has reduced with 39%. This discrepancy is due to higher average production emissions for purchased laptops in 2024 relative to 2023, which is further described in the common methodology section. In terms of monitors, the average production emissions have been reduced by 34%, and the purchased quantity has reduced with 33%. The emissions related to servers has increased with 85%, and the purchased quantity has increased by 93% compared to 2023. In Figure 6, Advania Sweden's purchased quantities per product category and their emissions are presented.

Read more about the underlying emissions data in Table 2 under Common Methodology in chapter 2.

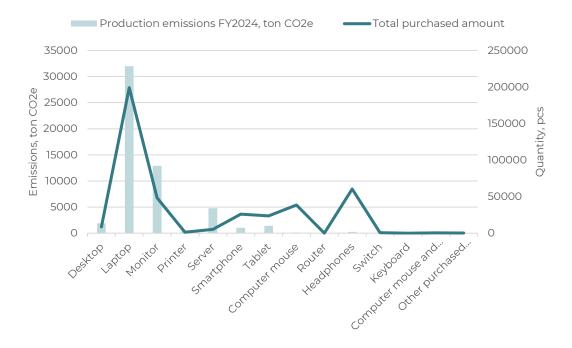


Figure 6. Advania Sweden's emissions per product category and purchased quantity for 2024.

Transportation and Distribution

The emissions from transportation and distribution stand for close to 8% of Advania Sweden's total emissions. These emissions are, however, based on estimations, and thus come with a degree of uncertainty. Read more on the underlying emissions data under Common Methodology in chapter 2.

Emissions in this category primarily depend on three factors: the weight of the goods transported, the distance traveled, and the mode of transportation. The transported weight is influenced by customer demand, and since production is based in Asia, these parameters are considered relatively stable in current emissions estimates. This leaves the mode of transportation as the key variable. According to available data, approximately 60% of goods are transported by air freight from Asia, which is highly emission intensive. Although this is a rough estimate based on discussions between Advania Sweden and its producers, it underscores significant potential for reducing emissions by increasing the use of sea freight.

For 2022, the share of air freight was 85%, so Advania Sweden are starting to move in the right direction after a few years with logistical challenges due to global events such as the Covid-19 outbreak and hold-ups in the Suez Canal. However, the level of air freight is yet to return to the 2019 levels of 15%.

In terms of data quality, all emissions associated with transportation are based on estimated activity data.

Energy and Fuel Use

The emissions from energy and fuel use in the facilities in Sweden have increased from 331 to 351 tons CO₂e compared to 2023, demonstrating a 6% increase. The increase can be found from offices, while emissions from data centers have remained on a similar level.

Table 12. Overall emissions and share of kWh actively sourced from renewable sources.

Emissions and share of renewable sourced kWh per facility type	Total emissions 2024, ton CO2e	Total emissions 2023, ton CO2e	Share of kWh actively sourced from renewable sources
Offices	291	270	46%
Data centers	61	61	100%
Total	351	331	75%

Office emissions increased by 21 metric tons of CO2 equivalent compared to 2023, primarily due to higher electricity consumption and a more carbon-intensive non-renewable energy mix.

Electricity accounts for about 64% of office energy use, and despite an increase in renewable sourcing to 85%, overall electricity consumption rose by 16%. The emission factor for the Nordic residual mix increased by 14%, making the non-renewable portion more polluting.

The single office that utilizes natural gas reported a slight increase in consumption in 2024, resulting in an increase in emissions from fuel usage. The remaining offices have reported district heating or electricity-based heating, whose respective emissions are categorized as heating- or electricity-based emissions. This is further visualized in Table 13.

Detailed emissions from offices	Total emissions 2024, ton CO2e	Total emissions 2023, ton CO2e	Energy 2024, kWh	Share of kWh actively sourced from renewable sources
Electricity	188	173	2 105 896	85%
Heating	59	61	1 195 271	7%
Cooling	12	10	681 953	0%
Fuel use	30	25	118 875	-
Refrigerant leakage	1,6	0,4	-	-
Total	291	270	4 101 995	46%

Table 13. Detailed emissions and share of kWh actively sourced from renewable sources from offices.

The emissions from data centers have remained on similar level relative to 2023, resulting in emissions of 61 tons of CO2e. However, this development is connected to a decrease in emissions from electricity and increase in emissions from refrigerant leakage. The reduction in emissions from electricity can be attributed to a higher proportion of electricity being sourced from hydropower instead of wind or renewable energy mixes relative to 2023, both of which have a higher emission factor compared to hydropower.

The increase in emissions from refrigerant leakage is associated with the seven data centers for which estimations were performed. For these locations, emissions were calculated based on their electricity consumption, as detailed in the general methodology chapter. The electricity consumption from the datacenters without specific information regarding leakage was greater this year relative to 2023, leading to increased emissions. In 2024, estimated emissions from refrigerant leakage was performed for seven data centers compared to six data centers in 2023.

It is also worth noting that refrigerant leakages tend to fluctuate annually, potentially causing significant year-to-year changes. The reported share of electricity originating from renewable sources remained at 100% for both years, while the electricity consumption increased by 9% compared to 2023.

Table 14. Detailed emissions and share of kWh actively sourced from renewable sources from data centers.

Detailed emissions from data centers	Total emissions 2024, ton CO2e	Total emissions 2023, ton CO2e	Energy 2024, kWh	Share of kWh actively sourced from renewable sources
Energy use	37	48	4 940 490	100%
Refrigerant leakage	24	13	-	-
Total	61	61	4 940 490	100%

Comparing the overall energy consumption from the year 2023 and 2024, the share of renewable energy has increased from 74% to 75%. Whilst the renewable share of combined consumption from electricity, heating and cooling has increased, an increase in fuel use of natural gas has been reported for 2024 partly offsetting this. As seen in Table 15, there is still potential to increase the share of renewable energy sourcing in the Swedish offices.

Table 15. Overall energy consumption per facility type and share of kWh sourced from renewable sources.

Facility type	Energy use 2024, kWh	Energy use 2023, kWh	Share of kWh actively sourced from renewable sources 2024	Share of kWh actively sourced from renewable sources 2023
Offices	4 101 995	3 584 680	46%	42%
Data centres	4 940 490	4 494 026	100%	100%
Total	9 042 485	8 078 706	75%	74%

Overall, 91,2% of the calculated emissions from energy and fuel use originate from primary activity data, while the remaining 8,8% of emissions are based on estimated activity data. This is a slight decrease from 95% of the emissions being based on primary data in 2023. This development can be traced to the increase in estimated emissions from refrigerant leakage.

Business Travel

2,1% of Advania Sweden's emissions come from business travel. However, emissions have increased with almost 24% compared to 2023. The increase comes predominantly from flights. The increase can be traced to reported passenger-kilometers, which has increased from approximately 2 500 000 pkm in 2023, to just above 3 000 000pkm in 2024. For 2023, 28% of the activity data on which the emissions calculations were based on were measured; for 2024, this number is 15%. This showcase a great increase in data accuracy, allowing more detailed conclusions to be drawn in regard to how to reduce emissions related to business travel. Overall, Advania Sweden can reduce their impact by finding other ways to travel, especially for regional and short distance travel.

Table 16. Advania Sweden's emissions fro	om business travels.
--	----------------------

Business travel	Emissions FY2024, ton CO2e	Emissions FY2023, ton CO2e	Change, %
Company operated cars and rental cars	224	221	2%
Flights	895	655	37%
Train travel	1,7	1,2	37%
Taxi travel	20	17	15%
Hotel nights	131	128	2%
Other	1,6	1,8	-15%
Total	1 273	1 025	24%

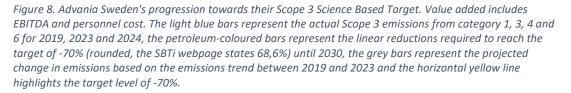
Progression towards Advania Sweden's Science Based Targets

Advania Sweden has set two Science Based Targets (SBTs): one absolute target for Scopes 1 and 2, and one intensity target for Scope 3. The absolute target means that emissions should reach a fixed amount for the target year. The intensity target, meanwhile, means that the intention is to decrease emissions in relation to a denominator, in Advania Sweden's case kSEK value added². For background information on SBT, please refer to their website³.

The graph below shows Advania Sweden's progression towards their Scopes 1 and 2 target. Due to recent acquisition of companies both base year 2019, most recent year 2023 and the target for 2030 has been updated. The updated target is to reduce their emissions in Scopes 1 and 2 to 265 tons of CO₂e by the year 2030, from a base year emission of 530 CO₂e. As can be seen in the graph, Advania Sweden must increase their pace to reach their target. To reach the target, a linear reduction of about 6% annually is required, which is slightly steeper than the projected decrease. The largest sources of emissions are company-operated cars and offices where renewable electricity is not yet purchased.



Figure 7. Advania Sweden's progression towards their Scopes 1 & 2 Science Based Target. The light blue bars represent the actual emissions in Scopes 1 and 2 for 2019, 2023 and 2024, the petroleum-coloured bars represent the linear reductions required to reach the target of -50% until 2030, the grey bars represent the projected change in emissions based on the emissions trend between 2019 and 2024 and the horizontal yellow line highlights the target level of -50%.


The Scope 3 target, related to emissions from category 1, 3, 4 and 6, is an economic intensity target, which means that the intention is to decrease emissions in relation to kSEK value

² Greenhouse Gas Emissions per Value Added (GEVA) is a method for setting economic intensity targets using the contraction of economic intensity. Targets set using the GEVA method are formulated by an intensity reduction of tCO2e/\$ value added. Under the GEVA method, companies are required to reduce their GEVA by 7% per year (compounded). The 7% year-on-year reduction rate is based on an absolute emissions reduction of about 75% by 2050 from 2010 levels. Read more in the <u>SBTi Target Setting Manual</u> on page 21. ³ https://sciencebasedtargets.org/how-it-works

added, which in Advania Sweden's case is defined as EBITDA plus personnel cost. While emissions per kSEK value added have decreased from the base year's 67,6 kg CO2e/kSEK to 25,7 kg CO2e/kSEK in 2024, the linear projection of about 18% annually is enough to reach the target.

Specific Methodology and Assumptions

Below, a walkthrough is presented of the activity data, emission factors, and assumptions used by Advania Sweden.

Business Travel

Company operated cars

- Activity data used: Driven kilometers (km) from Januari to December. Spent amount on mileage-reimbursement (converted to km) and on rental cars (SEK).
- Emission factors: Energimyndigheten (2024), DEFRA (2024), Trafikverket (2024), TRAFA (2024), Vägtrafikens utsläpp 2023, Körsträckor 2023, Hertz sustainability report (2020).

• Assumptions: Spendings for mileage was converted to km using 0.25 SEK/km. Flights

- Activity data used: Travelled distances per flight type & spend data booked outside Advania's travel agency.
- Emission factors: NTM (2022).
- The same km/SEK ratio as in 2023 report was assumed.

Hotel nights

- Activity data used: Spend data booked outside Advania's travel agency and via RTS.
- Emission factors: Greenview (2024), Travel and Climate Methodology report by Larsson & Kamb (2019).
- Assumptions: Locations for hotel stays in 2024 are unknown to Advania Sweden. It is assumed 50% of the stays were in Sweden, 25% in Europe, and 25% outside of Europe. Further, 1300 SEK/night has been assumed.

Train travel

- Activity data used: Distance data (km), spend data for train travels booked outside Advania's travel agency and via RTS.
- Emission factors: NTM (2020).
- Assumptions: A conversion factor of 200 SEK for 100km travelled was used. Taxi travels
 - Activity data used: Spend data for Advania and estimated spend data for RTS.
 - Emission factors: Taxiförbundet (2021), Taxi Stockholm.

Other business travel

- Activity data used: Spend data on bus and subway travels.
- Emission factors: NTM (2022 & 2019), Vattenfall Bra miljöval (2020).
- Assumptions: Costs converted into km by assuming 50 SEK for one 8 km trip by subway and 120 SEK for one 20 km trip by bus.

Energy and Fuel Use

Electricity in facilities

- Activity data used: Operational electricity consumption for Advania in kWh, Advania's allocated share of facility electricity in kWh.
- Emission factors: Energimarknadsinspektionen (2024), EPDs from Vattenfall AB (2021).
- Assumptions: For facilities which did not report any common electricity or did not know Advania's share of the common electricity consumption, the average kWh/m2 of those reported within Advania Group has been applied.

Heating in facilities

- Activity data used Operational heating consumption for Advania in kWh, Advania's allocated share of facility electricity in kWh when available.
- Emission factors: Energiföretagen VMK (2017 & 2024).
- Assumptions: For facilities that did not report any district heating consumption, and neither did report any fuel use for heat generation, reference values stating heating consumption per area for offices [kWh/m2] obtained from Energimyndigheten has been applied.

Cooling in facilities

- Activity data used: Reported district cooling consumption in kWh.
- Emission factors: Swedenergy (2014), AIB (2020).
- Assumptions: -

Fuel use in facilities

- Activity data used: Consumption of natural gas in kWh.
- Emission factors: Energiföretagen (2019).
- Assumptions: -

Refrigerant leakage in facilities

- Activity data used: Reported refrigerant refill, kg, allocated to Advania's share of the facility.
- Emission factors: Average figures provided by 2050 Consulting.
- Assumptions: For those facilities that had no information regarding refill of refrigerants, and wanted it to be estimated, a reference value provided by 2050 Consulting declaring emissions based on the facility's area was applied.

Electricity in data centers

- Activity data used: Operational electricity consumption for Advania Sweden in kWh and PUE number where available.
- Emission factors: Vattenfall (2022 & 2021), AIB (2018).
- Assumptions: For those data centers without information on PUE number, the average of those reported within Advania Group has been applied.

Refrigerant leakage in data centers

- Activity data used: Reported emissions from data centers where available, operational electricity consumption for Advania Sweden in kWh.
- Emission factors: Provided by data centers, The Swedish Environmental Protection Agency (2022) & IPCC (2022).
- Assumptions: See section Average value for refrigerant leakage in chapter 2.

Transportation and Distribution

Please refer to the Common Methodology in chapter 2.

Purchased Hardware

Please refer to the Common Methodology in chapter 2.

Other Purchases (Optional Categories)

Advania Sweden has not collected any activity data for optional categories.

Base Year and Most Recent Year Recalculation due to Acquisitions

Due to significant acquisitions, defined as > 5% of total CO₂e emissions in Advania Swedens base year recalculation policy, the base year and most recent year (2024) were recalculated by including activity data from the company RTS (acquired 2024). When specific activity data för the acquired company was missing full time employees (FTE) or SPEND data was used to estimate emissions.

Base Year Recalculation

Purchased hardware and transport and distribution

Total emissions per product category, calculated by average sales volumes and production emissions from PCFs of the most common models within each category for Advania 2019 (see detailed methodology in chapter 2), were recalculated by multiplying them by (1+total spend on hardware for the acquired company 2019/total spend on hardware Advania Sweden 2019).

Transport and distribution were recalculated following the same methodology as for purchased hardware.

All other categories

Emissions from all other categories were recalculated by multiplying them by the factor (1+FTE of the acquired company 2019/FTE of Advania Sweden 2019).

Most Recent Year Recalculation (2024)

Purchased Hardware and Transportation and distribution

Total emissions per product category calculated by average sales volumes and production emissions from PCFs of the most common models within each category for Advania 2019 (see detailed methodology in chapter 2), were recalculated by multiplying them by (1+total spend on hardware for the acquired company 2023/total spend on hardware for Advania Sweden 2023).

Transport and distribution were recalculated following the same methodology as for purchased hardware.

Business Travel

Company operated cars

- Activity data used: Driven kilometers (km) and spent amount on rental cars (SEK).
- Emission factors: Energimyndigheten (2021), Naturvårdsverket (2022), DEFRA (2022), Trafikverket (2022), Hertz (2020).
- Assumptions: When only total driven kilometers for the fleet were available and the car fleet consisted mostly of hybrid cars, with the exception of one electric and one diesel car, an emission factor for hybrid cars was used.

Flights

- Activity data used: Reported spend data categorized as other travel (assumed to consist of flight and train tickets)
- Emission factors: Provided by travel agency.
- Assumptions: The reported Spend data consisted of flight and train tickets. A similar price of 200 SEK/100 km was applied for flight and train travel, with a similar distribution between flight and train distances as reported by Advania Sweden 2023.

Hotel night

- Activity data used: Number of nights per FTE for Advania Sweden 2023
- Emission factors: Larsson & Kamb (2019), DEFRA.

• Assumptions: Number of hotel nights per FTE is similar as for Advania Sweden 2023 Train travel

- Reported spend data for other travel Emission factors: NTM(2020), DEFRA, WRI, IPCC.
- Assumptions: See flights

Taxi travels

- Activity data used: Spend data from travel agency and bookings outside of the agency.
- Emission factors: Taxiförbundet (2021), Taxi Stockholm.

• Assumptions: -

- Other business travel
 - Due to lack of data this was set to zero

Energy and Fuel Use

Electricity in facilities

- Activity data used: Operational electricity consumption in kWh.
- Emission factors: Energimarknadsinspektionen (2022), Vattenfall (2022 & 2021), AIB (2018).

Assumptions: -

Heating in facilties

- Activity data used: Acquired company's reported district heating consumption in kWh.
- Emission factors: Energiföretagen VMK (2022).
- Assumptions: -

Cooling in facilities

- Activity data used: Reported district cooling consumption in kWh.
- Emission factors: Svensk Fjärrvärme (2014), Nordisk medelmix.
- Assumptions: -

Fuel use in facilities

• Activity data used: N/A

Refrigerant leakage in facilities

• Activity data used: N/A

Electricity in data centers

- Activity data used: Operational electricity consumption for the acquired company in kWh
- Emission factors: Vattenfall (2022 & 2021), AIB (2018).
- Assumptions: For those data centers without information on PUE number, the average of those reported within Advania Group has been applied.
- Refrigerant leakage in data centers
 - Activity data used: N/A.
 - Emission factors: Provided by data centers, Naturvårdsverket (2022).
 - Assumptions: See section on average value for refrigerant leakage in chapter 2.

Updates in previous year's calculations

For Advania Sweden, some updates have been made in the 2019 and 2023 calculations due to changes in data and insights.

• The addition of RTS (acquired company during 2023) has resulted in added emissions to the 2023 and 2019 result. This is described in more detail in the chapter "Base year and most recent year recalculation due to acquisitions" above. The change in emissions is 3 925 tons of CO2e for FY2023 and 25 020 tons of CO2e for FY2019.

Advania Denmark

For Advania Denmark, the total emissions for the fiscal year 2024 are $4\ 223$ tons of CO₂e. Compared to 2023, the total emissions for Advania Denmark have decreased by 60%.

Results and Analysis

Figure 9 below displays the emissions within each Scope for Advania Denmark. As can be seen, the absolute majority of Advania Denmark's emissions occur outside of the direct operations. Overall, 86% of Advania Denmark's emissions are calculated from actual activity data, 14% are based on estimated data.

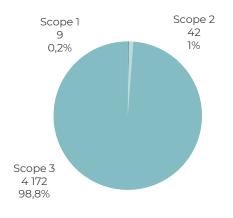


Figure 9. Greenhouse gas emissions [ton CO2e] for Advania Denmark, divided into Scopes.

Figure 10 below displays the emissions split into categories over the years. About 80% of the emissions come from purchased hardware, and 15% from the transportation of the same. Below, each of the four categories are presented more thoroughly.

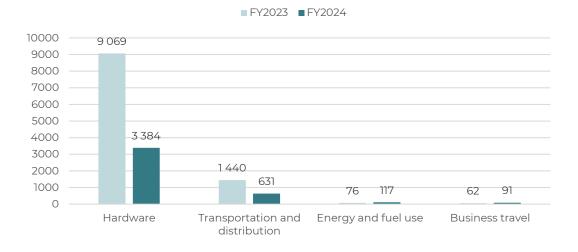


Figure 10. Emissions [ton CO_2e] for Advania Denmark divided into hardware, transportation and distribution, energy and fuel use, and business travel.

Hardware

The production of hardware stands for the majority of Advania Denmark's emissions, in alignment with the overall results for Advania Group. Within this category, purchases of monitors stand for about 28% of the total purchases volume, while being responsible for close to 35% of the emissions. Furthermore, the purchases of servers and printers are responsible for 19% and 18% of the emissions within this category respectively. All emissions from production of hardware are categorized as actual emissions, as they are calculated based on primary purchase data.

Compared to 2023, the production emissions from purchased hardware have decreased significantly by 63%. This development is primarily linked to a decrease in sold volumes. Overall, the amount of sold hardware has decreased by 58%. The largest decreased in sold quantities can be attributed to the product categories of servers, printer as well as desktops, which have decreased by 83%, 61% and 58% respectively.

Below, in Figure 11, the purchased quantities of each product category and their respective emissions are presented. More information about the underlying emissions data connected to hardware can be found in Table 2 under Common Methodology in Chapter 2.

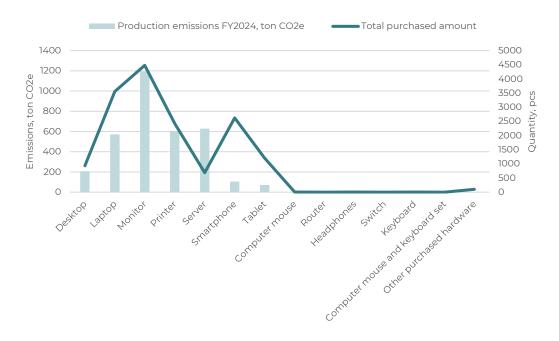


Figure 11. Advania Denmark's emissions per product category and purchased quantity for 2024.

Transportation and distribution

The emissions from transportation and distribution stand for 15% of Advania Denmark's total emissions. These emissions are however based on estimations, and thus come with a degree of uncertainty.

Emissions in this category rely on mainly three things: the transported weight, the distance, and the mode of transportation. As the transported weight depends on the demands from Advania Denmark's customers, and as the production is located in Asia, these two parameters are seen as relatively fixed in the way that these emissions are currently being

estimated. This leaves the mode of transportation. According to information available to Advania Sweden, 60% of the goods are transported by air freight from Asia, which also has been used to estimate the transportation emissions for Advania Denmark.

Advania Denmark's emissions from transportation and distribution for 2024 is estimated to be 631 tons of CO₂e, portraying a 56% decrease compared to previous year. This is a development greatly impacted by the reduced hardware quantities purchased. Additionally, updated weights connected to hardware product groups impacts the results heavily. Read more on the underlying emissions data for transportation under Common Methodology in Chapter 2.

Energy and Fuel Use

The emissions from energy and fuel use in the facilities in Denmark have increased from 76 to 117 tons CO₂e compared to 2023, demonstrating a 53% increase. The largest increase can be found from datacenters, where increased emissions from electricity can be traced to an increase in consumption. Consequently, estimated emissions from refrigerant leakage has also increased as a result from increased electricity consumption. This is visualized in Table 17 below. The slight increase in emissions from offices is partly due to increased reported consumption, as well as an increase of the emission factor for the Nordic residual mix, which increased 14% from the previous year.

Table 17. Overall emissions and share of kWh actively sourced from renewable sources.

Emissions and share of renewable sourced kWh per facility type	Total emissions 2024, ton CO2e	Total emissions 2023, ton CO2e	Share of kWh actively sourced from renewable sources
Offices	45	39	O%
Data centers	72	37	100%
Total	117	76	98%

The emissions from offices have been increased slightly with 6 tons of CO₂e compared to 2023 figures. As no share of reported energy consumption from offices is recognized to be actively sources from renewable sources, the increase in emissions is partly linked to an increase in the emission factor used for Nordic residual mix electricity. A reduction in emissions linked to district heating can be noticed from offices. This change is due to a more accurate emission factor used for district heating has been applied in this year's calculation, as a result of being able to determine that the source of heating was district heating. Below, in Table 18, a detailed description of emissions connected to offices is provided, along with respective values from 2023.

Table 18	. Detailed	emissions	from	offices.
----------	------------	-----------	------	----------

Detailed emissions from offices	Total emissions 2024, ton CO2e	Total emissions 2023, ton CO2e	Energy 2024, kWh	Energy 2023, kWh
Electricity	42	31	73 815	62 860
Heating	3	7	18 174	14 761
Cooling	-	-	-	-
Fuel use	-	-	-	-
Refrigerant leakage	-	-	-	-
Total	45	39	91 989	77 621

The emissions from data centers have increased from 37 tons to 72 tons of CO_2e . The 2023 calculations for data centers were updated as an error in reported kWh from two data centers were identified. The predominant reason for the increase in emissions is linked to an increase in reported electricity consumption, along with a greater share of the electricity being sourced from wind electricity rather than hydro-electricity compared to 2023, which

has a greater emission factor. Additionally, an increase in reported PUE number for the majority of data centers has been reported relative to 2023, which increases the electricity consumption and the emissions related to this consumption.

Table 19. Detailed emissions and share of kWh actively sourced from renewable sources from data centers.

Detailed emissions from data centers	Total emissions 2024, ton CO2e	Total emissions 2023, ton CO2e	Energy 2024, kWh	Share of kWh actively sourced from renewable sources
Energy use	42	12	4 289 209	100%
Refrigerant leakage	29	25	-	-
Total	72	37	4 289 209	100%

Comparing the overall energy consumption between the year 2023 and 2024, the share of renewable energy has remained on a stable level, on 98%. This along with an overall description of the energy consumption related to offices and data centers are shown in Table 20 below.

Table 20. Overall energy consumption per facility type and share of kWh sourced from renewable sources.

Energy consumption	kWh 2024	kWh 2023	Share of kWh actively sourced from renewable sources 2024	Share of kWh actively sourced from renewable sources 2023
Offices	91 989	77 621	0%	O%
Data centres	4 289 209	3 627 458	100%	100%
Total	4 381 198	3 705 079	98%	98%

Overall, 49% of the calculated emissions from energy and fuel use originates from primary activity data, with the remaining 51% of emissions are based on estimated activity data. This highlights an opportunity to increase the data quality for facilities and data centers.

Business travel

2,2% of Advania Denmark's emissions come from business travel, which accounts to 91 tons of CO_2e . Compared to 2023, the reported emissions from business travel have increased by 46%. The increase is predominantly connected to increased emissions from business flights. However, the reported activity data for flights was this year reported in spend by Advania Denmark, highlighting room for improvement of data quality as distance-based calculations are more accurate. Additionally, emissions from company operated cars has also increased from 4 tons of CO_2e in 2023 to about 11 tons of CO_2e in 2024, this as a result of greater distance of fossil-fuel based vehicles has been reported. A detailed overview of Advania Denmark's emissions from business travel is presented in Table 21 below. 85% of the emissions from business travel are calculated from actual activity data, 15% are based on estimated activity data.

Business travel	Emissions FY2024, ton CO2e	Emissions FY2023, ton CO2e	Change, %
Company operated cars and rental cars	11	4	161%
Flights	65	29	122%
Train travel	11,6	7,3	58%
Taxi travel	0,5	19,3	-98%
Hotel nights	2	2	1%
Other	-	-	-
Total	91	62	46%

Table 21. Advania Denmark's emissions from business travel.

Specific Methodology and Assumptions

Below, a walkthrough is presented of the activity data, emission factors, and assumptions used by Advania Denmark.

Business travel

Company operated cars

- Activity data used: Driven kilometers (km) and spent amount on rental cars (DKK).
- Emission factors: Energimyndigheten (2024), DEFRA (2024), Trafikverket (2024), TRAFA (2024), Vägtrafikens utsläpp 2023, Körsträckor 2023, Circle K Produktblad (2018).

Flights

- Activity data used: Spend data from travel agency.
- Emission factors: SAS Sustainability report 2023.

Hotel nights

- Activity data used: Spend data from travel agency and bookings outside of the agency.
- Emission factors: Greenview (2024).
- Assumptions: Locations for hotel stays in 2024 are unknown to Advania Denmark. It is assumed 50% of the stays were in Denmark, 25% in Europe, and 25% outside of Europe. Further, 1300 DKK/night has been assumed.

Train travel

- Activity data used: Travelled person-kilometers by train (pkm).
- Emission factors: DEFRA, WRI, IPCC and NTM (2020).
- Assumptions: -

Taxi travels

- Activity data used: Spend data from travel agency.
- Emission factors: Taxiförbundet (2021), Taxi Stockholm.
- Assumptions: -

Other business travel

- Activity data used: -
- Emission factors: -
- Assumptions: -

Energy and fuel use

Electricity in facilities

- Activity data used: Operational electricity consumption for Advania Denmark, in kWh. Electricity in common parts allocated to Advania Denmark's share of the facility, in kWh.
- Emission factors: Energimarknadsinspektionen (2024).
- Assumptions: For facilities which did not report any common electricity or did not know Advania's share of the common electricity consumption, the average kWh/m2 of those reported within Advania Group has been applied.

Heating in facilties

- Activity data used: Advania's 2023 heating consumption in kWh for Vanlöse and for Herlev, office expansion occurred in April 2024, 2023 heating consumption averaged per month taken for January-March and averaged per m2 multiplied by new square footage from April.
- Emission factors: Energiföretagen VMK (2017).

• Assumptions: For facilities that did not report any district heating consumption, and neither did report any fuel use for heat generation, reference values stating heating consumption per area for offices [kWh/m2] obtained from Energimyndigheten has been applied.

Cooling in facilities

- Activity data used: Reported that cooling consumption was included in the reported electricity consumption.
- Emission factors: -
- Assumptions: -

Fuel use in facilities

- Activity data used: -
- Emission factors: -
- Assumptions: -

Refrigerant leakage in facilities

- Activity data used: Reported refrigerant refill, kg, allocated to Advania's share of the facility.
- Emission factors: Figures provided by 2050 Consulting.
- Assumptions: -

Electricity in data centers

- Activity data used: Operational electricity consumption for Advania Denmark in kWh and PUE number where available.
- Emission factors: Å Entelios (2024), Vattenfall (2022), Energimarknadsinspektionen (2024).
- Assumptions: For those data centers without information on PUE number, the average of those reported within Advania Group has been applied.

Refrigerant leakage in data centers

- Activity data used: Reported emissions from data centers where available, operational electricity consumption for Advania Denmark in kWh.
- Emission factors: Provided by data centers, The Swedish Environmental Protection Agency (2022).
- Assumptions: See section Average value for refrigerant leakage in chapter 2.

Transportation and distribution

Please refer to the Common Methodology in chapter 2.

Purchased hardware

Please refer to the Common Methodology in chapter 2.

Advania Finland

For Advania Finland, the total emissions for the fiscal year 2024 are 4 468 tons of CO₂e. Compared to 2023, the total emissions for Advania Finland have increased by 98%.

Results and Analysis

Figure 12 below displays the emissions within each Scope for Advania Finland. The majority of Advania Finland's emissions can be found within Scope 2 and Scope 3. 93% of the overall emissions are calculated from actual activity data. The remaining 7% are based on estimated data.

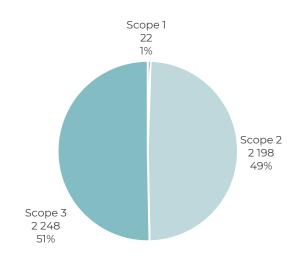
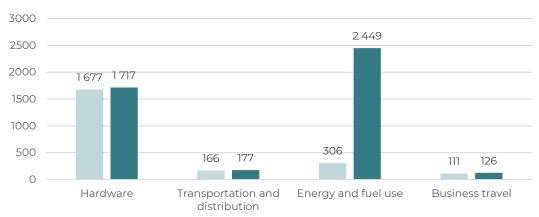



Figure 12. Greenhouse gas emissions for Advania Finland, divided into Scopes.

Figure 13 below displays the emissions split into categories over the years. The majority of emissions, close to 55%, can be found from energy and fuel use, 38% of the emissions originates from purchased hardware, and 4% from the transportation of the same. Below, each of the four categories are presented more thoroughly.

■ FY2023 ■ FY2024

Figure 13. Emissions [ton CO_2e] for Advania Finland divided into hardware, transportation and distribution, energy and fuel use, and business travel.

Hardware

The production of hardware is the second largest source of emissions for Advania Finland. Within this category, purchases of laptops contribute with approximately 47% of emissions. Other product groups of great impact are monitors and desktops, responsible for 23% and 14% of the emissions respectively.

Compared to 2023, the emissions from production of purchased hardware have increased by 2%, this while the amount of hardware purchased has increased by 23%. This development is a result from emission intense categories being purchased in less volume, while simultaneously increasing the purchasing volume of product categories that relatively emits much less during its production stage. The amount of purchased servers, which was the greatest source of hardware emissions for Advania Finland in 2023, has decreased by 93%. Additionally, the number of tablets has increased significantly. Figure 14 below presents the relationship between the purchased quantities and emissions related to each product category. All emissions from production of hardware is categorized as actual, as they are based on primary purchase data. More information about the underlying emissions data connected to hardware can be found in Table 2 under Common Methodology in Chapter 2.

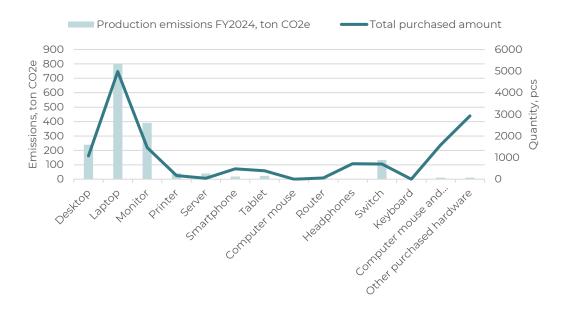


Figure 14. Advania Finland's emissions per product category and purchased quantity for 2024.

Transportation and distribution

The emissions from transportation and distribution stand for 177 tons of CO2e, contributing to about 4% of Advania Finland's total emissions. However, these emissions are estimated and does thereby includes degrees of uncertainty.

The emissions from transportation and distribution are mostly impacted by three parameters: transported weight, distance and mode of transportation. While some of these factors are more difficult for Advania to impact, such as the weight of the product along with the transportation distance, other actions can be taken to reduce the emissions within this category. Less packaging to optimize efficient loading could potentially be discussed with manufacturers. However, Advania's greatest possibility to reduce emissions within this

category lies in mode of transportation. According to information available to Advania Sweden, 60% of the goods are transported by air freight from Asia, which also has been used to estimate the transportation emissions for Advania Finland.

Advania Finland have, compared to 2023, increased their emissions from transportation and distribution with approximately 6%. One contributing factor is the estimated weight of transported products has increased by 6% because of updated average values for product categories, together with changed purchasing volume of certain product groups. More information on the underlying emissions data can be found in Common Methodology in Chapter 2.

Energy and Fuel Use

The emissions from energy and fuel use in the facilities in Finland have increased significantly, from 306 to 2 449 tons CO_2e , compared to 2023. While emissions from offices have decreased from 142 tons CO_2e to about 77 tons CO_2e , emissions from data centers have greatly increased, which can be seen in Table 22 below.

Table 22. Overall emissions and share of kWh actively sourced from renewable sources.

Emissions and share of renewable sourced kWh per facility type	Total emissions 2024, ton CO2e	Total emissions 2023, ton CO2e	Share of kWh actively sourced from renewable sources
Offices	77	142	70%
Data centers	2 372	164	44%
Total	2 449	306	95%

The emissions from offices have been reduced by 65 tons of CO_2e compared to 2023 figures. Whilst an increase in emission is noted from electricity, mostly due to increase in reported electricity consumption, a great abatement is connected to heating where emissions have reduced by approximately 98 tons of CO_2e . This development is connected to the fact that the largest office with the greatest heating consumption, responsible for 60% of the overall heating consumption, have reported consumption of low climate impact heating, thus resulting in minimal emissions. Table 23 below presents a detailed description of the offices' emissions and its respective values from 2023.

Table 23. Detailed emissions from offices.

Detailed emissions from offices	Total emissions 2024, ton CO2e	Total emissions 2023, ton CO2e	Energy 2024, kWh	Share of kWh actively sourced from renewable sources
Electricity	64	30	240 464	75%
Heating	12	110	220 638	61%
Cooling	0	0,3	975	O%
Fuel use	-	-	-	-
Refrigerant leakage	1,4	1,4	-	-
Total	77	142	462 076	70%

The emissions from data centers have, compared to 2023, increased significantly from 164 to 2372 tons of CO_2e . This heavy increase is due to a great decrease in consumed renewable electricity, which in 2023 was 100%. This reporting year, no certificate could be provided for one of Advania's largest data centers in Finland, resulting in only 45% of the overall electricity from data centers being sourced from renewable electricity sources. The emissions from electricity and refrigerant leakage, are further presented in Table 24 below.

Detailed emissions from data centers	Total emissions 2024, ton CO2e	Total emissions 2023, ton CO2e	Energy 2024, kWh	Share of kWh actively sourced from renewable sources
Energy use	2 339	130	5 043 612	45%
Refrigerant leakage	33	34	-	
Total	2 372	164	5 043 612	45%

Table 24. Detailed emissions and share of kWh actively sourced from renewable sources from data centers.

Comparing the overall energy consumption from facilities between the year 2023 and 2024, it can be seen that it has remained rather unchanged overall, with a reported increase in energy consumption for offices while data centers has reduced their consumption slightly. The overall share of actively sourced energy from renewable sources has decreased heavily, to 48%. This share for 2023 report was 95%. This development is greatly impacted this year's electricity consumption from data centers, as one of the largest data centers reported usage of residual electricity. Compared to last year, all data centers reported renewable electricity usage for Advania Finland. This development is furthered highlighted in Table 25 below.

Table 25. Overall energy consumption per facility type and share of kWh sourced from renewable sources.

Energy consumption	kWh 2024	kWh 2023		Share of kWh actively sourced from renewable sources 2023
Offices	627 295	462 076	70%	40%
Data centres	5 043 612	5 260 074	45%	100%
Total	5 670 907	5 722 151	48%	95%

Overall, 95% of the calculated emissions from energy and fuel use originates from primary activity data, with the remaining 5% of emissions are based on estimated activity data. This highlights an increase in data quality compared to previous year, as the share of emissions based on primary activity data for 2022 was 76%.

Business travel

126 tons CO₂e of Advania Finland's total emissions comes from business travel, which represent 2,8% of their overall emissions. Compared to 2023, the emissions from this category have increased by 14%. Most of these emissions can be traced to flight travel, which are responsible for 93 tons of CO₂e. The reported activity data of person-km connected to flight travel has increased between 2023 and 2024, resulting in an increase in flight emissions of 20 ton CO₂e. Emissions related to hotel nights has however decreased, as a result of reduced guest nights being reported in 2024 relative to 2023. 81% of the emissions from business travel is based on actual data, whilst the remaining 19% are estimated.

		-		
			Emissions FY2024,	Emissi

Table 26. Advania Finland's emissions from business travels.

Business travel	ton CO2e	ton CO2e	Change, %
Company operated cars and rental cars	28	27	6%
Flights	93	73	27%
Train travel	0,2	1,7	-89%
Taxi travel	1,5	1	11%
Hotel nights	3	8	-62%
Other	0,2	0,3	-10%
Total	126	111	14%

ions EV2027

Specific Methodology and Assumptions

Below, a walkthrough is presented of the activity data, emission factors, and assumptions used by Advania Finland.

Business travel

Company operated cars

- Activity data used: Mileage reimbursement in EUR and SEK converted to EUR.
- Emission factors: Energimyndigheten (2024), DEFRA (2024), Trafikverket (2024), TRAFA (2024), Vägtrafikens utsläpp 2023, Körsträckor 2023, Circle K Produktblad (2018), Hertz sustainability report (2020).
- Assumptions: an average of 0.57EUR/km was used.

Flights

- Activity data used: Number of flights per flight type.
- Emission factors: NTM (2022).
- Assumptions: For each flight type an average distance was used (900km for short distance flights, 2000km for medium distance flights and 5000km for long distance flights.

Hotel nights

- Activity data used: Number of guest nights.
- Emission factors: Greenview (2024), Travel and Climate Methodology report by Larsson & Kamb (2019).
- Assumptions: -

Train travel

- Activity data used: Number of trips per region (Sweden, Nordics, Europe).
- Emission factors: DEFRA, WRI, IPCC.
- Assumptions: 100km per trip was used for all these trips.

Taxi travels

- Activity data used: Spend data.
- Emission factors: Taxiförbundet (2021), Taxi Stockholm.
- Assumptions: -

Other business travel

- Activity data used: Total number of trips by bus, subway and ferry.
- Emission factors: NTM (2022 & 2019 & 2010), Vattenfall Bra miljöval (2020).
- Assumptions: Distances were estimated (20km per bus trip, 8km per subway trip, 160km per ferry trip).

Energy and fuel use

Electricity in facilities

- Activity data used: Operational electricity consumption for Advania in kWh, Advania's allocated share of facility electricity in kWh when available.
- Emission factors: Residual mix (2023), Energimarknadsinspektionen (2024).
- Assumptions: For facilities which did not report any common electricity or did not know Advania's share of the common electricity consumption, the average kWh/m2 of those reported within Advania Group has been applied.

Heating in facilties

- Activity data used: Operational heating consumption for Advania in kWh, Advania's allocated share of facility electricity in kWh when available.
- Emission factors: Energiföretagen VMK (2017).

• Assumptions: For facilities that did not report any district heating consumption, and neither did report any fuel use for heat generation, reference values stating heating consumption per area for offices [kWh/m2] obtained from Energimyndigheten has been applied.

Cooling in facilities

- Activity data used: Reported district cooling consumption in kWh.
- Emission factors: AIB (2018). Swedenergy (2014), AIB (2020).
- Assumptions: -

Fuel use in facilities

- Activity data used: -
- Emission factors: -
- Assumptions: -

Refrigerant leakage in facilities

- Activity data used: Reported refrigerant refill kg, allocated to Advania's share of the facility.
- Emission factors: Average figures provided by 2050 Consulting.
- Assumptions: For those facilities that had no information regarding refill of refrigerants, and wanted it to be estimated, a reference value provided by 2050 Consulting declaring emissions based on the facility's area was applied.

Electricity in data centers

- Activity data used: Operational electricity consumption for Advania Finland in kWh and PUE number where available.
- Emission factors: Vattenfall (2022, 2021), AIB (2018).
- Assumptions: For those data centers without information on PUE number, the average of those reported within Advania Group has been applied.

Refrigerant leakage in data centers

- Activity data used: Reported emissions from data centers where available, operational electricity consumption for Advania Finland in kWh.
- Emission factors: Provided by data centers, The Swedish Environmental Protection Agency (2022).
- Assumptions: See section Average value for refrigerant leakage in chapter 2.

Transportation and Distribution

Please refer to the Common Methodology in chapter 2.

Purchased Hardware

Please refer to the Common Methodology in chapter 2.

Advania Norway

Advania Norway's total emissions for the fiscal year 2024 are 16 387 tons of CO₂e within the system boundary for Advania Group's reporting, and 16 901 tons of CO₂e when including employee commuting. Compared to 2023, the total emissions for Advania Norway have increased by 3%, including the voluntary categories.

Results and Analysis

Figure 15 below displays the emissions within each Scope for Advania Norway. The majority of Advania Norway's emissions occur outside of the direct operations. Overall, 87% of the mandatory emissions are based on actual activity data, 13% are based on estimated activity data.

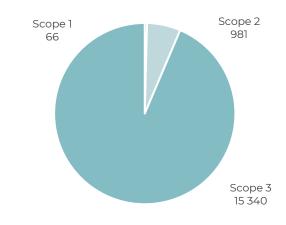


Figure 15. Greenhouse gas emissions for Advania Norway, divided into Scopes.

Figure 16 below displays the emissions split into categories over the years. Just above 78% of the emissions originates from purchased hardware, and around 12% from the transportation of the same. Below, each of the four categories are presented more thoroughly.

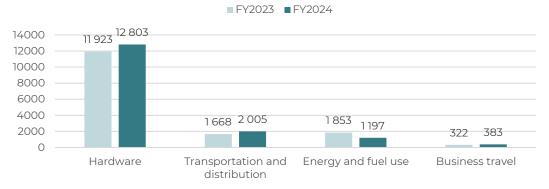


Figure 16. Emissions [ton CO_2e] for Advania Norway divided into hardware, transportation and distribution, energy and fuel use, and business travel.

Hardware

The production of hardware stands for the majority of Advania Norway's emissions, in line with the majority of Advania's divisions as well as the overall result for Advania Group. Within this category, purchases of monitors and laptops contribute with approximately 66% of emissions, 36% and 30% respectively. As emissions connected to hardware is calculated based on actual purchase data, these emissions are categorized as actual emissions.

Compared to 2023, the emissions from production of purchased hardware have increased by 7%, this while the amount of hardware purchased has decreased by close to 7%. This discrepancy is the result of a large increase in the number of purchased printers, whilst the amount of purchased laptops has decreased slightly. The increase in purchased printers has increased emissions from this product category with approximately 600 tons of CO_2e compared to 2023.

Figure 17 below presents the relationship between the purchased quantities and emissions related to each product category. More information about the underlying emissions data connected to hardware can be found in Table 2 under Common Methodology in Chapter 2.

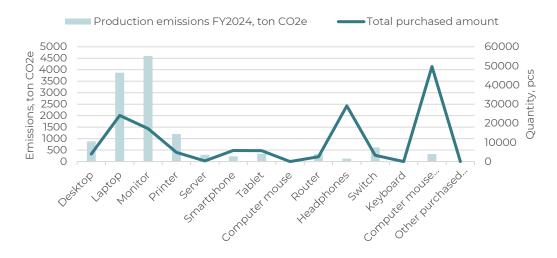


Figure 17. Advania Norway's emissions per product category and purchased quantity for 2024.

Transportation and distribution

The emissions from transportation and distribution stand for 2 005 tons of CO₂e, contributing to about 12% of Advania Norway's total emissions. However, these emissions are estimated, and include degrees of uncertainty.

The emissions from transportation and distribution are mostly impacted by three parameters: transported weight, distance and mode of transportation. While some of these factors are more difficult for Advania to impact, such as the weight of the product along with the transportation distance, other actions can be taken to reduce the emissions within this category. Less packaging to optimize efficient loading could potentially be discussed with manufacturers. However, Advania's greatest possibility to reduce emissions within this category lies in mode of transportation. According to information available to Advania Sweden, 60% of the goods are transported by air freight from Asia, which also has been used

to estimate the transportation emissions for Advania Norway. More information on the underlying emissions data can be found in Common Methodology in Chapter 2.

Energy and Fuel Use

The emissions from energy and fuel use in the facilities in Norway have decreased with approximately 35% compared to 2023. Both emissions from offices and data centers have reported a decrease of emissions from electricity consumption. An overall visualization can be seen in Table 27 below.

Table 27. Overall emissions and share of kWh actively sourced from renewable sources.

Emissions and share of renewable sourced kWh per facility type	Total emissions 2024, ton CO2e	Total emissions 2023, ton CO2e	Share of kWh actively sourced from renewable sources
Offices	1 015	1 145	9%
Data centers	182	708	98%
Total	1197	1853	60%

The emissions from offices have decreased by 130 tons of CO₂e compared to 2023 figures. A slight decrease in emission is noted from electricity. This is connected to risen consumption of renewable of electricity, which has increased from 0% to 12% between 2023 and 2024. The greatest decrease in emissions has been linked to heating. This is primarily due to that a more accurate emission factor has been applied for the district heating consumption.

Table 28. Detailed emissions from offices.

Detailed emissions from offices	Total emissions 2024, ton CO2e	Total emissions 2023, ton CO2e	Energy 2024, kWh	Share of kWh actively sourced from renewable sources
Electricity	885	958	1 754 773	12%
Heating	129	186	558 084	O%
Cooling	0,3	0,3	15 890	0%
Refrigerant leakage	1,1	1,2	-	
Total	1 015	1 145	2 328 747	9%

The emissions from data centers have compared to 2023 decreased from 708 to 182 tons of CO_2e . The decrease in emissions is both connected to a great increase in share of renewable electricity, as well as reduced electricity consumption. In 2023, the share of renewable electricity from data centers was approximately 83%, this year 98% of the electricity is actively sourced from renewable sources. Emissions from refrigerant leakage has increase with about 39 tons of CO_2e , which is due to one of the largest data centers have reported refill of refrigerant R134a, which is responsible for the great majority of emissions within this category. The emissions from electricity and refrigerant leakage are further presented in Table 29 below.

Table 29. Detailed emissions and share of kWh actively sourced from renewable sources from data centers.

Detailed emissions from data centers	Total emissions 2024, ton CO2e	Total emissions 2023, ton CO2e	Energy 2024, kWh	Share of kWh actively sourced from renewable sources
Energy use	137	702	4 592 754	98%
Refrigerant leakage	45	6	-	
Total	182	708	4 592 754	98%

Overall, close to 91% of the emissions from energy and fuel use are based on actual activity data provided by Advania Norway. The remaining emissions are based on estimated activity data.

Business travel

383 tons CO₂e of Advania Norway's total emissions comes from business travel, which represent 2,3% of their overall emissions. Compared to 2023, the emissions from this category have increased by 19%. The increase comes primarily from flight travel where emissions has been stated by travel agency, as well as increased travel distance from company operated cars. The increase from company operated cars is primarily linked to the increased travel distance from fossil-based vehicles, whilst the share of distance covered by electric vehicles has reduced compared to 2023. The emissions from business travel and a comparison to 2023 is presented in Table 30 below.

Table 30. Advania Norway's emissions from business travels.

	Emissions FY2024,	Emissions FY2023,	
Business travel	ton CO2e	ton CO2e	Change, %
Company operated cars and rental cars	85	39	120%
Flights	266	212	26%
Train travel	18,2	3,9	365%
Taxi travel	0,3	0,2	56%
Hotel nights	12	63	-81%
Other	1,3	4,7	-73%
Total	383	322	19 %

Specific Methodology and Assumptions

Below, a walkthrough is presented of the activity data, emission factors, and assumptions used by Advania Norway.

Business travel

Company operated cars

- Activity data used: Driven kilometers (km) and spent amount on rental cars (NOK).
- Emission factors: Energimyndigheten (2024), DEFRA (2024), Trafikverket (2024), TRAFA (2024), Vägtrafikens utsläpp 2023, Körsträckor 2023, IVL (2021), Hertz sustainability report (2020).

Flights

- Activity data used: Emissions data provided by Egencia and number of trips from Simployer.
- Emission factors: NTM (2022).
- Assumptions: For trips from Simployer an average of 0.22 tCO2e/trip was used (based on other travels conducted with Egencia).

Hotel nights

- Activity data used: Guest nights booked via the Egencia and spend data from Simployer.
- Emission factors: Greenview (2024), Travel and Climate Methodology report by Larsson & Kamb (2019).
- Assumptions: Locations for hotel stays reported by Simployer in 2024 are unknown to Advania Norway. These guestnights are assumed to be inside of Europe.

Train travel

- Activity data used: Emissions data from Egencia and number of trips booked via Simployer.
- Emission factors: DEFRA, WRI, IPCC.
- Assumptions: 50% of trips via Simployer assumed to be train with a distance of 200km.

Taxi travels

- Activity data used: Number of trips booked via Simployer,
- Emission factors: Taxiförbundet (2021), Taxi Stockholm.

• Assumptions: 30% of trips via Simployer assumed to be taxi with a distance of 5km. Other business travel

- Activity data used: Estimated passenger kilometres (pkm) travelled by bus and ferry.
- Emission factors: NTM (2022 & 2010)
- Assumptions: -

Energy and fuel use

Electricity in facilities

- Activity data used: Operational electricity consumption for Advania in kWh, Advania's allocated share of facility electricity in kWh.
- Emission factors: Residual mix (2023), Energimarknadsinspektionen (2024).
- Assumptions: For facilities which did not report any common electricity or did not know Advania's share of the common electricity consumption, the average kWh/m2 of those reported within Advania Group has been applied.

Heating in facilities

- Activity data used: Operational heating consumption for Advania in kWh, Advania's allocated share of facility electricity in kWh when available.
- Emission factors: Energiföretagen VMK (2017).
- Assumptions: For facilities that did not report any district heating consumption, and neither did report any fuel use for heat generation, reference values stating heating consumption per area for offices [kWh/m2] obtained from Energimyndigheten has been applied.

Cooling in facilities

- Activity data used: Reported district cooling consumption in kWh.
- Emission factors: AIB (2018). Swedenergy (2014), AIB (2020).
- Assumptions: -

Fuel use in facilities

- Activity data used: -
- Emission factors: -
- Assumptions: -

Refrigerant leakage in facilities

- Activity data used: Refrigerant refill in, kg, if reported allocated to Advania's share of the facility.
- Emission factors: Average figures provided by 2050 Consulting.
- Assumptions: For those facilities that had no information regarding refill of refrigerants, and wanted it to be estimated, a reference value provided by 2050 Consulting declaring emissions based on the facility's area was applied.

Electricity in data centers

- Activity data used: Operational electricity consumption for Advania Norway in kWh and PUE number where available.
- Emission factors: AIB European Residual Mixes (2018), EPDs from Vattenfall AB (2021).
- Assumptions: For those data centers without information on PUE number, the average of those reported within Advania Group has been applied.

Refrigerant leakage in data centers

- Activity data used: Reported emissions from data centers where available, operational electricity consumption for Advania Norway in kWh.
- Emission factors: Provided by data centers, The Swedish Environmental Protection Agency (2022).
- Assumptions: See section Average value for refrigerant leakage in chapter 2.

Transportation and Distribution

Please refer to the Common Methodology in chapter 2.

Purchased Hardware

Please refer to the Common Methodology in chapter 2.

Recalculations Of Previous Year's Result

The following recalculations has been performed for Advania Norway's 2023 climate statement:

- Error in calculation of flight emissions was identified during this year's calculations, resulting in that some travels hadn't been included. This has now been updated and resulted in 120 tons of CO₂e.
- Hardware purchase has been added for the 2023 calculation, with the inclusion of the product categories of router, headphones and switch being added (Switch has been included in 2023 reporting of router, as the category was not specified during 2023 data collection). The inclusion of the above mentioned categories increased the emissions from hardware and their transportation with 1 022 tons of CO₂e.

Advania Iceland

Advania Iceland's total emissions for the fiscal year 2024 are 4 296 tons of CO_2e within the system boundary for Advania Group's reporting, and 5 578 tons of CO_2e when including purchased IT-services and foods, waste, employee commuting, use of sold products, and end of life treatment of sold products. Compared to 2023, the total emissions for Advania Iceland have decreased by approximately 10%, including the voluntary categories.

Results and Analysis

Figure 18 below displays the emissions within each Scope for Advania Iceland. As can be seen, the absolute majority of the emissions occur outside of the direct operations. Scope 1 does not include emissions from rental cars. In accordance with Advania Iceland's SBT, these emissions are put in scope 3 category 6 Business travel.

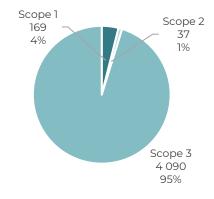


Figure 18. Greenhouse gas emissions for Advania Iceland, divided into Scopes.

Figure 19 below displays the emissions split into categories over the years showing decreases in emissions from purchased hardware, transportation, and energy and fuel use, but increases from business travel. Below, the categories are presented more thoroughly.

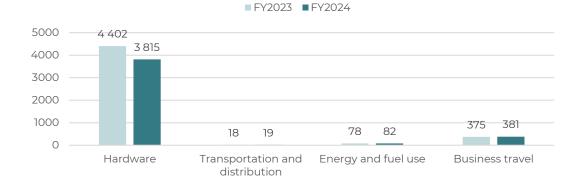
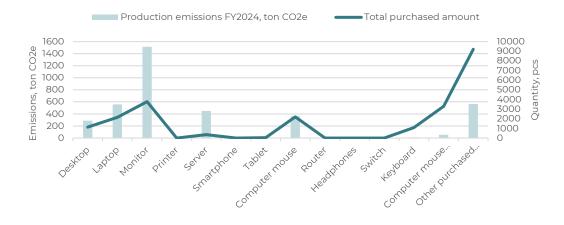



Figure 19. Emissions [ton CO₂e] for Advania Iceland divided into hardware, transportation and distribution, energy and fuel use, and business travel.

Hardware

The production of hardware is the largest emissions category for Advania Iceland at over 3 800 tons of CO_2e . 40% of the emissions come from the production of the purchased monitors and another 15% comes from the production of laptops. An additional 15% of emissions comes from Automatic teller machines, something that differentiates Advania Iceland from the rest of Advania Group.

Transportation and Distribution

Transportation only stands for 0,4% of Advania Iceland's emissions, which makes them stand out compared to the other countries in Advania Group. Advania Iceland have collected specific transport emissions from suppliers. 90% of the emissions come from air freight, and 8% from sea freight.

Energy and Fuel Use

The emissions from energy and fuel use in the facilities in Advania Iceland have increased from 78 to 82 tons $CO_{2}e$ compared to 2023, demonstrating a 4% increase. Emissions from heating in offices have increased slightly, while emissions from electricity in data centers have decreased.

Advania Iceland has zero emissions from their electricity use in offices. Table 31 below shows emissions from offices and data centers.

Energy and fuel use	Total emissions FY2024, ton CO2e	Share of emissions	Total emissions FY2023, ton CO2e
Electricity	0	0%	0
Heating	57	70%	52
Electricity in data centers	25	30%	26
Total	82		78

Table 31. Detailed emissions from offices.

Business Travel

9% of Advania Iceland's emissions come from business travel, accounting for 381 tons of CO_2e . Compared to 2023, the reported emissions from business travel have increased by 2%. The major driver behind the increase is emissions coming from flights, as seen in Table 32 below.

Table 32. Advania Icelands's emissions from business travels.

Business travel	Emissions FY2024, ton CO2e	Emissions FY2023, ton CO2e	Change, %
Company operated cars and rental cars	269	275	-2%
Flights	100	95	6%
Taxi travel	0,2	0,3	-36%
Hotel nights	12	5	142%
Total	381	375	2%

Data Quality

The data quality for Advania Iceland is very high. Only some of the energy use in facilities has been estimated.

Progression towards Advania Iceland's Science Based Targets

Advania Iceland has set two Science Based Targets: one absolute target for Scopes 1 and 2, and one intensity target for Scope 3. The absolute target means that emissions should reach a fixed amount for the target year. The intensity target, meanwhile, means that the intention is to decrease emissions in relation to a denominator, in Advania Iceland's case ISK value added⁴. For background information on SBT, please refer to their website⁵. An important note is that Advania Iceland's SBTi Target is based on location-based emissions. Consequently, the Scope 2 emissions differentiate from the ones presented above. In terms of location-based emissions, Advania Iceland FY2024 emitted 214 ton CO₂e.

The graph below shows Advania Iceland's progression towards their Scopes 1 and 2 target. The target is to reduce their emissions in Scopes 1 and 2 to 118 tons of CO_2e . In their base year in 2021, these emissions were 235 tons of CO_2e , and for 2024 the emissions are 214 tons of CO_2e . As can be seen in the graph, Advania Iceland must increase their pace to reach their target. The largest source of emissions are company operated cars.

⁴ Greenhouse Gas Emissions per Value Added (GEVA) is a method for setting economic intensity targets using the contraction of economic intensity. Targets set using the GEVA method are formulated by an intensity reduction of tCO2e/\$ value added. Under the GEVA method, companies are required to reduce their GEVA by 7% per year (compounded). The 7% year-on-year reduction rate is based on an absolute emissions reduction of about 75% by 2050 from 2010 levels. Read more in the <u>SBTi Target Setting Manual</u> on page 21. ⁵ https://sciencebasedtargets.org/how-it-works

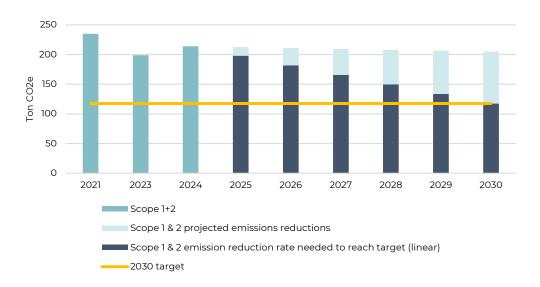


Figure 20. Advania Iceland's progression towards their Scopes 1 & 2 Science Based Target. The light blue bars represent the actual emissions in Scopes 1 and 2 for 2021 to 2024, the petrol-coloured bars represent the linear reductions required to reach the target of -50% until 2030, the grey bars represent the projected change in emissions based on the emissions trend between 2021 and 2024 and the horizontal yellow line highlights the target level of -50%.

The Scope 3 target is an intensity target, which means that the intention is to decrease their emissions in relation to their ISK value added (EBITDA + personnel cost). Emissions per ISK value added have decreased from the base year's 0,000902 kg CO_2e/ISK to 0,000455 kg CO_2e/ISK in 2024, suggesting Advania Iceland are well on their way to reach their target at 0,000433 kg CO_2e/ISK well ahead of the target year.

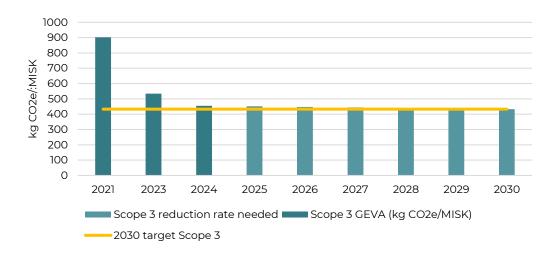


Figure 21. Advania Iceland's progression towards their Scope 3 Science Based Target. Value added includes EBITDA and personnel cost. The light blue bars represent the Scope 3 GEVA for 2021 to 2024, the petrol-coloured bars represent the linear reductions required to reach the target of -52% until 2030 and the horizontal yellow line highlights the target level of -52%.

Specific Methodology and Assumptions

As Advania Iceland performs their own climate calculations, no further description about the methodology or specification are provided here.

Updates in Previous Year's Calculations

In order to align the Advania Iceland's result with their SBTi commitments, emissions from rental cars are presented in category 3.6, Business travel. This has also been adjusted for the 2023 result.

Advania UK

The total emissions for Advania UK for the fiscal year 2024 are 1 607 tons of CO_2e . Compared to 2023, the total emissions for Advania UK have decreased by 10%.

Results and Analysis

Figure 22 below displays the emissions within each Scope for Advania UK. As can be seen, the majority of Advania UK's emissions occur outside of the direct operations. Scope 2 make up close to a fifth of the emissions. Overall, 86% of Advania UK's emission are calculated from actual activity data, with the remaining 14% being based upon estimated data.

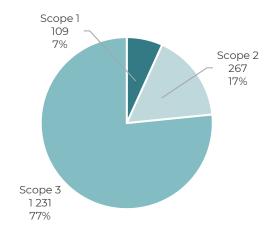


Figure 22. Greenhouse gas emissions [ton CO₂e] for Advania UK, divided into Scopes.

Figure 23 below displays the emissions split into categories for 2023 and 2024. UK did not report any activity data in the optional categories (e.g. employee commuting). Purchased hardware represents close to 50% of the emissions for Advania UK in 2024.



Figure 23. Emissions [ton CO₂e] for Advania UK divided into hardware, transportation and distribution, energy and fuel use, and business travel.

Hardware

The production of hardware is the largest emissions category for Advania UK at just over 770 tons of CO_2e . About 40% of this (312 tons of CO_2e) comes from the production of the purchased laptops and another 36% of these emissions (276 tons of CO_2e) comes from the production of the purchased monitors. The total purchased volume of IT equipment is lower in 2024 than in 2023. While the amount of purchased products has reduced by 33% relative to 2023 values, the emissions have only reduced by 3%. This is due to an increase in product groups whose emission factor is higher this year relative to 2023. Read more about this in chapter 2, Common Methodology.

The product category of laptops has increased in purchased quantity from 1625 to 1944 between 2023 and 2024, while the number of monitors has decreased from 1611 to 1034. An increased purchased quantity of desktops has also resulted in an increased emissions for this product category.

As the emissions from hardware are based on actual purchase data, these emissions are categorised as actual emissions. Read more on the underlying emissions data in Table 2 under Common Methodology in chapter 2. In figure 24 below, a visualisation of the purchased quantities along with their respective emissions are presented.

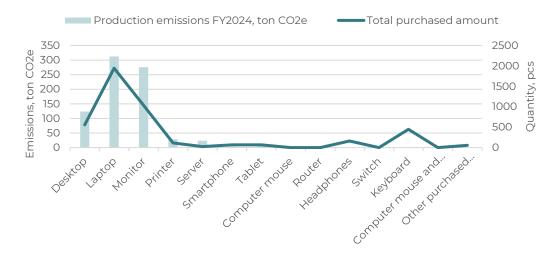


Figure 24. Advania UK's emissions per product category and purchased quantity for 2024.

Transportation and Distribution

The emissions from transportation and distribution has decreased by approximately 22% compared to 2023. Transportation and distribution emissions are however based on estimations, and thus come with a degree of uncertainty. Read more on the underlying emissions data under Common Methodology in chapter 2. In total, these emissions make about 8% of the total impact for Advania UK. The decrease in emissions from transportation is primarily due to a decrease weight of the purchased hardware. The purchased quantities of more heavy weight products such as monitors has decreased, while more lightweight products such as laptops has been purchased, resulting in less tonne-kilometres.

Emissions in this category rely mainly on three factors: the transported weight, the distance, and the mode of transportation. The transported weight depends on the demands from Advania UK's customers and the specific product weights. The production occurs in Asia, leaving the transport distances relatively constant over time. This leaves the mode of transportation and according to information available to Advania Sweden, 60% of the goods are transported by air freight from Asia, which is very emissions intensive. There is great capacity to reduce emissions by transporting even more by boat. Note that the estimates for Advania UK have been made using the same assumptions as for Advania Sweden, leaving space for improvement going forward.

Energy and Fuel Use

The emissions from energy and fuel use in the facilities in Advania UK have decreased from 489 to 362 tons CO₂e compared to 2023, demonstrating a 26% reduction. The decrease can be traced to electricity use in data centers, where more renewable energy has been reported. The share of renewable electricity in data centers has increased from 55% to 68% between 2023 and 2024. However, some of the electricity consumption is still estimated, leaving room for improvement to increase the data quality. Overall, 62% of the emissions connected to energy and fuel use are calculated from actual activity data. The remaining 38% are based on estimated activity data.

While UK's total emissions from energy and fuel use have decreased, emissions from offices have increased by 5% compared to 2023. There has been a slight increase in emissions from electricity. For fuel use, usage has remained stable, meaning that emissions have done the same. Table 33 below shows emissions from offices and data centers.

Detailed emissions from offices	Total emissions 2024, ton CO2e	Total emissions 2023, ton CO2e	Energy 2024, kWh	Share of kWh actively sourced from renewable sources
Electricity	194	184	421 124	24%
Fuel use	27	0,3	99 822	0%
Refrigerant leakage	0,05	0	-	-
Total	222	212	520 946	19%

Table 33. Detailed emissions from offices and data centers.

Detailed emissions from data centers	Total emissions 2024, ton CO2e	Total emissions 2023, ton CO2e	Energy 2024, kWh	Share of kWh actively sourced from renewable sources
Energy use	136	270	546 399	68%
Refrigerant leakage	4	7	-	
Total	140	277	546 399	68%

Business Travel

24% of Advania UK's emissions come from business travel, accounting for 385 tons of CO_2e . Compared to 2023, the reported emissions from business travel have increased by 2 tons of CO_2e , which represents an increase of 0.5%. The major drivers behind the emissions come from company operated cars and flights, as seen in Table 34 below. 100% of the emissions from business travel are calculated from actual activity data provided by Advania UK. In every respect, except for car travel, there was a decrease in emissions, with notable decreases in emissions from taxi travel and hotel nights.

Table 34. Advania UK's emissions from business travels.

Business travel	Emissions FY2024, ton CO2e	Emissions FY2023, ton CO2e	Change, %
Company operated cars and rental cars	110	84	31%
Flights	247	257	-4%
Train travel	10	77	-10%
Taxi travel	1,8	4	-56%
Hotel nights	16	26	-40%
Other	0,1	0,2	-24%
Total	385	383	0%

Specific Methodology and Assumptions

Below, a walkthrough is presented of the activity data, emission factors, and assumptions used by Advania UK.

Business travel

Company operated cars

- Activity data used: Driven km for different types of company operated cars, spend data for rental cars.
- Emission factors: Energimyndigheten (2024), DEFRA (2024), Trafikverket (2024), TRAFA (2024), Vägtrafikens utsläpp 2023, Körsträckor 2023, Hertz Sustainability report (2020).

Flights

- Activity data used: Reported passenger kilometers.
- Emission factors: NTM (2022).
- Assumptions: -

Hotel nights

- Activity data used: Number of hotel nights.
- Emission factors: Greenview (2024).
- Assumptions: -

Train travel

- Activity data used: Travelled person-kilometers by train (pkm).
- Emission factors: DEFRA, WRI, IPCC.
- Assumptions: Assuming Heathrow to Paddington, £25 per ticket and ~30 km.

Taxi travels

- Activity data used: Spend data.
- Emission factors: Taxiförbundet (2021).
- Assumptions: -

Other business travel

- Activity data used: Spend data on local travels by bus and subway..
- Emission factors: NTM (2022 & 2019), Vattenfall Bra miljöval (2020).
- Assumptions: For both bus and subway, it is assumed that one ticket costs £2.80 and one trip is 20 km.

Energy and fuel use

Electricity in facilities

- Activity data used: Operational electricity consumption for Advania UK in kWh, allocated share of facility electricity in kWh.
- Emission factors: IEA (2023), AIB (2018 & 2024), International Electricity Factors (2023).
- Assumptions: -

Fuel use in facilities

- Activity data used: Consumption of natural gas and diesel in kWh.
- Emission factors: Energiföretagen (2021), The Swedish Environmental Protection Agency (2023), The Swedish Energy Agency (2023).
- Assumptions: -

Refrigerant leakage in facilities

- Activity data used: Reported no leakages.
- Emission factors: -

• Assumptions: -

Electricity in data centers

- Activity data used: Electricity consumption reported.
- Emission factors: AIB (2024 & 2018), International Electricity Factors (2023).
- Assumptions: For those data centers without information on PUE number, the average of those reported within Advania Group has been applied.

Refrigerant leakage in data centers

- Activity data used: Estimated operational electricity consumption for Advania UK in kWh.
- Emission factors: IPCC (2022)
- Assumptions: See section Average value for refrigerant leakage in chapter 2.

Transportation and Distribution

Please refer to the Common Methodology in chapter 2.

Purchased Hardware

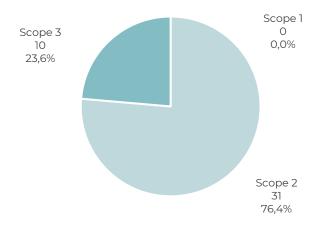
Please refer to the Common Methodology in chapter 2.

Other Purchases (optional categories)

Advania UK has not collected any activity data for optional categories.

Recalculation of Previous Year's Climate Statement

A correction regarding the diesel consumption was for one of the Advania UK facilities in 2023 was executed during this year's climate statement. The 2023 emisisons thereby increased by 4,65 ton of CO₂e in Scope 1 and 0.8 ton of CO₂e in Scope 3.



Advania Serbia

For Advania Serbia, the total emissions for the fiscal year 2024 are 41 tons of CO_2e excluding employee commuting and 59 tons of CO_2e including the commuting. Compared to 2023, the total emissions for Advania Serbia have decreased by 34% excluding the commuting.

Results and Analysis

Figure 25 below displays the emissions within each Scope for Advania Serbia. The emission distribution differs from the group with the largest share of emissions in Scope 2 and less then 50 % of the emissions in Scope 3, including the employee commuting which is not a required category to report on. Data quality have been radically improved with an increase in emission calculations from only 15 % based on actual activity data in 2023 to 66 % in 2024.

Figure 25. Greenhouse gas emissions [ton CO_2e] for Advania.

Figure 26 below displays the emissions split into categories over the years showing a decrease in emissions from energy and fuel use. The "voluntary categories" bar includes employee commuting Below, the categories are presented more thoroughly.

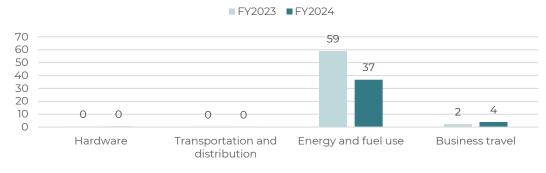


Figure 26. Emissions [ton CO_2e] for Advania Serbia divided into hardware, transportation and distribution, energy and fuel use and business travel.

Hardware & Transportation and Distribution

The emission from the purchased hardware is not a representative case for the group. Serbia's emissions from hardware make up less than half a ton of CO_2e , that is 1% of Advania Serbia's total impact. This year, Advania Serbia only purchased 9 products in total, comparable to 10 products last year.

As the transports emissions are closely linked to the weight of the purchase hardware, these emissions are also small in comparison to the rest of the group.

Energy and Fuel Use

Advania Serbia only have one office and do not have any data centers under their operational control. No data was reported for this office during the 2023, and was therefore estimated, which makes it difficult to compare against 2024. This year, it was reported that all heating was provided by electricity, thus these emissions are included in the "electricity" data seen in Table 35. Previous years, heating by natural gas has been estimated. The emissions decrease can therefore be traced to improved data quality, and a shift from natural gas heating to electrical heating.

Detailed emissions from offices	Total emissions 2024, ton CO2e	Total emissions 2023, ton CO2e	Energy 2024, kWh	Energy 2023, kWh
Electricity	36,8	52,7	32 464	68 937
Heating	-	-	-	-
Cooling	-	-	-	-
Fuel use	-	6,4		25 406
Refrigerant leakage	-	-	-	-
Total	36,8	59,0	32 464	94 343

Business travel & Employee Commuting

Emissions from business travel have increased slightly compared to last year. The emissions are insignificant compared to the overall results for the Group.

Emissions from employee commuting remain similar to 2023.

Specific Methodology and Assumptions

Below, a walkthrough is presented of the activity data, emission factors, and assumptions used by Advania Serbia.

Business travel

Company operated cars

- Activity data used: -
- Emission factors: -
- Assumptions: -

Flights

- Activity data used: Passenger kilometers (pkm) provided by Advania Serbia.
- Emission factors: NTM (2022).
- Assumptions: -

Hotel nights

- Activity data used: Number of nights.
- Emission factors: Greenview (2024).

Train travel

- Activity data used: -
- Emission factors: -
- Assumptions: -

Taxi travels

- Activity data used: -
- Emission factors: -
- Assumptions: -

Other business travel

- Activity data used: -
- Emission factors: -
- Assumptions: -

Energy and fuel use

Electricity in facilities

- Activity data used: Operational electricity consumption for Advania in kWh.
- Emission factors: AIB (2024).

Heating in facilties

- Activity data used: Heating included in electricity.
- Emission factors: -
- Assumptions: -

Cooling in facilities

- Activity data used: The district cooling consumption (kWh) is already included in the reported electricity consumption.
- Emission factors: -
- Assumptions: -

Fuel use in facilities

- Activity data used: -
- Emission factors: -
- Assumptions: -

Refrigerant leakage in facilities

- Activity data used: -
- Emission factors: -
- Assumptions: -

Transportation and distribution

Please refer to the Common Methodology in chapter 2.

Purchased hardware

Please refer to the Common Methodology in chapter 2.

Advania Sri Lanka

For Advania Sri Lanka, the total emissions for the fiscal year 2024 are 252 tons of CO_2e excluding employee commuting and 373 tons of CO_2e including the commuting. Compared to 2023, the total emissions for Advania Sri Lanka have increased by almost 366% excluding the commuting.

Results and Analysis

Figure 27 below shows the emissions per Scope for Advania Sri Lanka. As can be seen, the emissions in the Sri Lankan operations end up in Scopes 2 and 3. Overall, 96% of the emissions are calculated based on actual activity data, with the remaining emissions being based on estimated activity data.

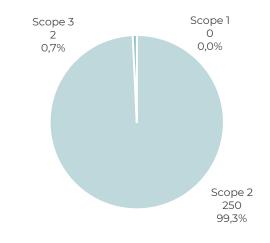


Figure 27. Greenhouse gas emissions [ton CO₂e] for Advania Sri Lanka, divided into Scopes.

The largest change in emissions between 2023 and 2024 can be seen in the Scope 2 category "Energy and fuel use". In the Scope 3 emissions it's notable that business travel is going down and the majority of emissions come from employee commuting which has quadrupled since 2023.

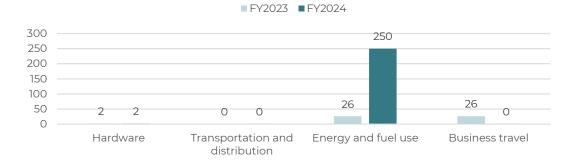


Figure 28. Emissions [ton CO_2e] for Advania Sri Lanka divided into hardware, transportation and distribution, energy and fuel use and business travel.

Hardware & Transportation and Distribution

The climate impact from the hardware purchased by Advania Sri Lanka is insignificant in comparison to the total purchases of the group. Less than hundred products in total, with the larger part being computer mice, smartphones and headphones, making up less than a hundredth of a percent of the total hardware purchases of the group. The emission reduction compared to last year in this category stems from a change in which products were purchased, with the more emission intensive monitors being the most purchased product type last year.

Fewer and lighter products purchased this year also led to a decrease in the estimated emissions from transportation and distribution. Although the emissions from transportation and distribution stand for a small share of the total impact, the estimates behind these calculations could be reviewed going forward as Sri Lanka stands out from the other Advania companies geographically.

Energy and Fuel Use

The energy use in the facility in Sri Lanka have increased by almost 600% compared to 2023, leading to an almost tenfold increase in emissions. This is because the reported electricity consumption connected to cooling has this year increased significantly. Most likely, this is due to an error in reporting from previous year.

Detailed emissions from offices	Total emissions 2024, ton CO2e	Total emissions 2023, ton CO2e	Energy 2024, kWh	Energy 2023, kWh
Electricity	32,0	25,6	62 271	61 072
Heating	-	-	-	-
Cooling	218,2	0,4	424 541	23 843
Fuel use	-	-	-	-
Refrigerant leakage	-	-	-	-
Total	250,2	26,0	486 812	84 915

Table 36. Breakdown of emissions and energy use in the office in Sri Lanka.

Business Travel

This year, minimal emissions connected to business travel have been calculated as no flights or company operated cars have been reported. The sole contribution to emissions are a few hotel nights.

Specific Methodology and Assumptions

Below, a walkthrough is presented of the activity data, emission factors, and assumptions used by Advania Sri Lanka.

Business travel

Company operated cars

- Activity data used: -
- Emission factors: -
- Assumptions: -

Flights

- Activity data used: -
- Emission factors: -
- Assumptions: -

Hotel nights

- Activity data used: Amount of guestnights in Europe.
- Emission factors: DEFRA.
- Assumptions: -

Train travel

- Activity data used: -
- Emission factors: -
- Assumptions: -

Taxi travels

- Activity data used: -
- Emission factors: -
- Assumptions: -

Other business travel

- Activity data used: -
- Emission factors: -
- Assumptions: -

Energy and fuel use

Electricity in facilities

- Activity data used: Operational electricity consumption from grid and renewable sources, allocated to Advania's share of the facility, in kWh. Common electricity consumption allocated to Advania's share in kWh.
- Emission factors: IEA (2017), Vattenfall (2021).
- Assumptions: -

Heating in facilities

- Activity data used: -
- Emission factors: -
- Assumptions: As the facility is located in a tropical geographical location and have not reported any heating consumption, it is assumed that there is no heating of the facility. The same assumption was applied in 2023 calculation.

Cooling in facilities

- Activity data used: Cooling reported as electric but not included in electricity consumption.
- Emission factors: IEA (2017).

Fuel use in facilities

- Activity data used: -
- Emission factors: -
- Assumptions: -

Refrigerant leakage in facilities

- Activity data used: No refill of refrigerant was reported.
- Emission factors: -
- Assumptions: -

Electricity in data centers

- Activity data used: No data centers are used.
- Emission factors: -
- Assumptions: -

Refrigerant leakage in data centers

- Activity data used: No data centers are used.
- Emission factors: -
- Assumptions: -

Transportation and distribution

Please refer to the Common Methodology in chapter 2.

Purchased hardware

Please refer to the Common Methodology in chapter 2.

5.Energy Mapping

According to the Global Reporting Initiative (GRI) standard for energy mapping, a company should, in addition to the emission report, inform on the energy consumption both within and outside of its own business. Here, the methodology is presented along with the results from the energy mapping completed for the reported emission categories.

Methodology

The energy mapping includes the total use of energy used for business travel, electricity use, heating, and cooling. For the use of electricity, heating, and cooling, the energy mapping is based on the reported energy use from each office and data center.

The energy mapping for Advania's business travels comes from the reported data, either in the form of kilometres travelled (km), the amount of fuel used (litres), money spent (SEK), or the number of nights at hotels. An energy factor (kWh/km), as offered by the Network of Transport Measures (NTM), has been used for train travel and flights. Travel by car (both company-operated cars and taxis) has an energy factor (J/litres) from the Swedish Energy Agency (The Swedish Energy Agency). Relevant conversion factors were used to change units to cover all data points.

Results for Energy Mapping

The overall energy use for Advania Group in 2024 sums up to about 37,1 GWh in own operations, divided by 34,9 GWh in facilities and 2,2 GWh in cars.

Energy and fuel use	Energy consumption, kWh
Offices	14 104 998
Data centers	20 790 230
Cars	2 247 255
Total	37 143 483

Table 37. The energy and fuel use in Advania's operations in 2024.

In the facilities, 75% of the energy use is actively purchased from renewable or fossil free sources. This is a decrease compared to last year, and the predominant factor is due to one large data centre in Finland not having a certificate during 2024. On top of the 75% of active renewable sourcing, there are renewable shares in the residual electricity grid and district heat mixes. However, as they are not actively sourced from renewable or fossil free sources, they are not included in this assessment. Table 38 shows that Advania Sweden and Advania Norway are the biggest users of energy in their facilities.

Energy in facilities, country	Actively sourced renewable/fossil-free energy, kWh	Residual energy*, kWh	Actively sourced renewables in data centers, kWh	Residual energy in data centers, kWh
Denmark	4 289 209	91 989	4 289 209	0
Finland	2 694 259	2 976 648	2 250 540	2 793 072
Iceland	7 270 088	22 429	1 355 337	22 429
Norway	4 727 728	2 193 772	4 518 293	74 461
Serbia	0	32 464	0	0
Sri Lanka	0	486 812	0	0
Sweden	6 822 995	2 219 490	4 940 490	0
UK	473 593	593 752	372 399	174 000
Total	26 277 873	8 617 355	17 726 268	3 063 962

Table 38. The energy use in Advania Group's facilities divided per country. The two columns on the far right show the energy use in data centers specifically and are subsets of the total facility energy use in columns 2 and 3.

* Residual energy refers to all energy not actively sourced from renewable sources, for example the Nordic residual mix is included here. Although parts of the Nordic residual mix and the Swedish average district heat come from renewable sources, it is not an active choice to use renewable energy.

Contact 2050

For questions regarding the climate report, contact:

• Gunnar Granberg, gunnar.granberg@2050.se